
Hyperion Manual
Release 0.9.2

Thomas Robitaille

August 16, 2013

CONTENTS

i

ii

CHAPTER

ONE

INTRODUCTION

This is the documentation for Hyperion, a three-dimensional dust continuum Monte-Carlo radiative transfer code.
Models are set up via Python scripts, and are run using a compiled Fortran code, optionally making use of the Message
Passing Interface (MPI) for parallel computing.

Important: Before you proceed, please make sure you have read the following disclaimers:

• The developers cannot guarantee that the code is bug-free, and users should sign up to the mailing list to ensure
that they are informed as soon as bugs are identified and fixed. The developers cannot be held responsible for
incorrect results, regardless of whether these arise from incorrect usage, a bug in the code, or a mistake in the
documentation.

• The user is fully responsible for ensuring that parameters such as photon numbers and grid resolution are ade-
quate for the problem being studied. Hyperion will not raise errors if these inputs are inadequate.

If your work makes use of Hyperion, please cite:

Robitaille, 2011, HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code,
Astronomy & Astrophysics 536 A79 (ADS, BibTeX).

1

http://www.hyperion-rt.org
https://groups.google.com/forum/?fromgroups#!forum/hyperion-announce
http://adsabs.harvard.edu/abs/2011A%26A...536A..79R
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2011A%26A...536A..79R&data_type=BIBTEX&db_key=AST&nocookieset=1

Hyperion Manual, Release 0.9.2

2 Chapter 1. Introduction

CHAPTER

TWO

NOTE ON UNITS AND CONSTANTS

All quantities in Hyperion are expressed in the cgs system. Throughout the documentation, constants are sometimes
used in place of values (e.g. au, pc). These can be imported (in Python) using:

from hyperion.util.constants import *

or, to control which constants are imported:

from hyperion.util.constants import au, pc, lsun

See hyperion.util.constants for more details.

3

Hyperion Manual, Release 0.9.2

4 Chapter 2. Note on units and constants

CHAPTER

THREE

DOCUMENTATION

3.1 Installation

Important: This section contains information on setting up the dependencies for Hyperion as well as Hyperion itself.
If you have any issues with the installation of any of the dependencies or Hyperion, please first talk to your system
administrator to see if they can help you get set up!

3.1.1 Dependencies

First, you will need to install several dependencies. Please follow the instructions at the following pages to make sure
that you have all the dependencies installed.

Fortran code dependencies

Summary of dependencies

The packages required for the Fortran code are:

• A recent Fortran compiler. The following compilers are known to work:

– gfortran 4.3 and later

– ifort 11 and later

– pgfortran 11 and above

• HDF5 1.8.5 or later with the Fortran bindings

• An MPI installation (e.g. MPICH2 or OpenMPI) with the Fortran bindings

Note that often, default installations of HDF5 and MPI packages do not include support for Fortran - this has to be
explicitly enabled as described below.

Fortran compiler

The first dependency is a Fortran compiler. In addition to commercial compilers (e.g. ifort, pgfortran, ...),
there are a couple of free ones, the most common of which is gfortran. If you don’t already have a compiler
installed, you can install gfortran via package managers on Linux machines, or from MacPorts or binary installers

5

http://www.hdfgroup.org/HDF5/
http://www.mpich.org/
http://www.open-mpi.org/

Hyperion Manual, Release 0.9.2

on Mac (e.g. http://gcc.gnu.org/wiki/GFortranBinaries). If you are unsure about how to do this, speak to your system
administrator.

Non-root installs

If you do not have root access to the machine you are using, then replace /usr/local in the following instructions
by e.g. $HOME/usr. In addition, you should never include sudo in any of the commands.

Automated Installation

Note: You only need to follow this section if you do not have HDF5 or MPI already installed

The easiest way to install these dependencies correctly is to use the installation script provided with Hyperion. First,
make sure you have downloaded the latest tar file from here, then expand it with:

tar xvzf hyperion-x.x.x.tar.gz
cd hyperion-x.x.x

Then, go to the deps/fortran directory and run the automated install script provided:

cd deps/fortran
python install.py <prefix>

where <prefix> is the folder in which you want to install the MPI and HDF5 libraries. To avoid conflicting with
existing installed versions (that may not have Fortran support), it is best to install these in a dedicated directory such
as /usr/local/hyperion:

python install.py /usr/local/hyperion

and the libraries will be installed in the lib, include, etc. directories inside /usr/local/hyperion. Once the
installation is complete, the installer will instruct you to add certain commands to your startup files.

Note: if you are installing to a location outside your user directory, you will need to run the command with sudo,
i.e.:

sudo python install.py <prefix>

Next, open a new terminal and ensure that the following commands:

which mpif90
which h5fc

return a path that is inside the installation path you specified, for example:

$ which mpif90
/usr/local/hyperion/bin/mpif90
$ which h5fc
/usr/local/hyperion/bin/h5fc

If you get command not found then you have probably not set up your $PATH correctly.

The installation script has a number of options (e.g. to set the compilers) that can be seen with:

python install.py --help

6 Chapter 3. Documentation

http://gcc.gnu.org/wiki/GFortranBinaries
https://github.com/hyperion-rt/hyperion/downloads

Hyperion Manual, Release 0.9.2

If the installation fails, a log will be posted to the Pastebin service. Copy the URL and report it either by email or on
the Github Issues.

If the installation succeeds, you can ignore the rest of this document, and move on to the Python code dependencies.

Manual Installation: MPI

Note: You only need to follow this section if you do not have MPI already installed.

In order to use the parallel version of the radiation transfer code, you will need an installation of MPI that supports
Fortran. By default, MacOS X ships with OpenMPI, but the Fortran bindings are not included. In this section, I have
included instructions to install the MPICH2 library with support for Fortran (though you can in principle use any MPI
distribution).

Installation
Note: If you encounter any errors at any stage, see the Troubleshooting section.

First, download the source for the latest stable release of MPICH2 from the MPI downloads page. Once downloaded,
unpack the file and then go into the source directory:

cd mpich2-x.x.x

and configure the installation:

./configure --enable-fc --prefix=/usr/local/mpich2

In practice, you will probably want to use a specific fortran compiler, which you can specify using the F77 and FC
variables as follows:

./configure F77=ifort FC=ifort --enable-fc --prefix=/usr/local/mpich2

Once the configure script has successfully run, you can then proceed to build the MPI library:

make

If the build is successful, then you can install the library into place using:

sudo make install

Finally, you will need to add the MPICH2 /usr/local/mpich2/bin directory to your $PATH. To check that the
installation was successful, type:

which mpif90

and you should get:

/usr/local/mpich2/bin/mpif90

If this is not the case, then the installation was unsuccessful.

Troubleshooting

3.1. Installation 7

http://pastebin.com/
https://www.github.com/hyperion-rt/hyperion/issues
http://www.mpich.org/downloads/

Hyperion Manual, Release 0.9.2

MacOS 10.5 and ifort If you get the following error when running ./configure:

configure: error: **** Incompatible Fortran and C Object File Types! ****
F77 Object File Type produced by "ifort -O2" is : : Mach-O 64-bit object x86_64.
C Object File Type produced by "gcc -O2" is : : Mach-O object i386.

then you are probably using the 64-bit Intel Fortran Compiler on MacOS 10.5.x, but the 32-bit version of gcc. To fix
this, you will need to switch to using the 32-bit Intel Fortran Compiler. First, clean up the installation so far with:

make clean

Then, rerun configure and build using:

./configure F77="ifort -m32" FC="ifort -m32" --enable-fc --prefix=/usr/local/mpich2
make
sudo make install

Manual Installation: HDF5

Note: You only need to follow this section if you do not have HDF5 already installed.

Installation
Note: If you encounter any errors at any stage, see the Troubleshooting section.

To compile the Fortran part of the radiation transfer code, you will need the HDF5 library v1.8.5 or later, with support
for Fortran enabled. While package managers such as Fink and MacPorts include HDF5, they often do not include the
Fortran bindings. Therefore, it is best to install the HDF5 library manually from source.

To start with, download the source code from the HDF5 downloads page, then go into the source code directory:

cd hdf5-x.x.x

and configure the installation:

./configure --enable-fortran --enable-hl --prefix=/usr/local/hdf5_fortran

In practice, you will probably want to use a specific fortran compiler, which you can specify using the FC variable as
follows:

./configure --enable-fortran --enable-hl --prefix=/usr/local/hdf5_fortran FC=ifort

Once the configure script has successfully run, you can then proceed to build the HDF5 library:

make

If the build is successful, then you can install the library into place using:

sudo make install

Finally, you will need to add the HDF5 /usr/local/hdf5_fortan/bin directory to your $PATH. To check
that the installation was successful, type:

which h5fc

and you should get:

8 Chapter 3. Documentation

http://www.hdfgroup.org/ftp/HDF5/current/src/

Hyperion Manual, Release 0.9.2

/usr/local/hdf5_fortran/bin/h5fc

If this is not the case, then the installation was unsuccessful.

Note: The reason we install HDF5 in hdf5_fortran as opposed to simply hdf5 is so as not to conflict with a
possible installation of the library without the Fortran bindings.

Troubleshooting

MacOS 10.5 and ifort If you get the following error when running make:
...
H5f90proto.h:1211: warning: previous declaration of ’H5_FC_FUNC_’ was here
H5f90proto.h:1216: error: ’H5_FC_FUNC_’ declared as function returning a function
H5f90proto.h:1216: warning: redundant redeclaration of ’H5_FC_FUNC_’
H5f90proto.h:1213: warning: previous declaration of ’H5_FC_FUNC_’ was here
H5f90proto.h:1218: error: ’H5_FC_FUNC_’ declared as function returning a function
H5f90proto.h:1218: warning: parameter names (without types) in function declaration
H5f90proto.h:1218: warning: redundant redeclaration of ’H5_FC_FUNC_’
H5f90proto.h:1216: warning: previous declaration of ’H5_FC_FUNC_’ was here
make[3]: *** [H5f90kit.lo] Error 1
make[2]: *** [all] Error 2
make[1]: *** [all-recursive] Error 1
make: *** [all-recursive] Error 1

then you are probably using the 64-bit Intel Fortran Compiler on MacOS 10.5.x, but the 32-bit version of gcc. To fix
this, you will need to switch to using the 32-bit Intel Fortran Compiler. First, clean up the installation so far with:

make clean

Then, rerun configure and build using:

./configure --enable-fortran --enable-hl --prefix=/usr/local/hdf5_fortran FC="ifort -m32"
make
sudo make install

If this does not work, try cleaning again, and setup the 32-bit ifort using the scripts provided with ifort. For example,
if you are using ifort 11.x, you can do:

make clean
source /opt/intel/Compiler/11.0/056/bin/ia32/ifortvars_ia32.sh
./configure --enable-fortran --enable-hl --prefix=/usr/local/hdf5_fortran FC=ifort
make
sudo make install

NAG f95 If you get the following error when running make:

Error: H5fortran_types.f90, line 39: KIND value (8) does not specify a valid representation method
Errors in declarations, no further processing for H5FORTRAN_TYPES
[f95 error termination]
make[3]: *** [H5fortran_types.lo] Error 1
make[2]: *** [all] Error 2
make[1]: *** [all-recursive] Error 1
make: *** [all-recursive] Error 1

3.1. Installation 9

Hyperion Manual, Release 0.9.2

you are using the NAG f95 compiler, which by default does not like statements like real(8) :: a. To fix this,
you will need to specify the -kind=byte option for the f95 compiler. First, clean up the installation so far with:

make clean

Then, rerun configure and build using:

./configure --enable-fortran --enable-hl --prefix=/usr/local/hdf5_fortan FC="ifort -kind=byte"
make
sudo make install

Python code dependencies

Summary of dependencies

The packages required for the Python code are:

• Python

• NumPy

• Matplotlib

• h5py

• Astropy

Overview

How you install these depends on your operating system, whether you are an existing Python user, and whether you
use package managers. To find out whether any of these are already installed, start up a Python prompt by typing
python on the command line, then try the following commands:

import numpy
import matplotlib
import h5py
import astropy

If you see this:

>>> import numpy
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named numpy
>>>

then the module is not installed. If you see this

>>> import numpy
>>>

then the module is already installed.

Linux

Numpy, Matplotlib, and h5py should be available in most major Linux package managers. If Astropy is not available,
you can easily install it from source. To do this, go to the Astropy homepage and download the latest stable version.
Then, expand the tar file and install using:

10 Chapter 3. Documentation

http://www.python.org
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://h5py.alfven.org/
http://www.astropy.org
http://www.astropy.org

Hyperion Manual, Release 0.9.2

tar xvzf astropy-x.x.tar.gz
cd astropy-x.x
python setup.py install

Finally, check that Astropy imports cleanly:

~> python
Python 2.7.2 (default, Aug 19 2011, 20:41:43) [GCC] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import astropy
>>>

MacOS X

MacPorts If you are installing Python for the first time, we strongly recommend the use of MacPorts to install a full
Python distribution. If you would like to do this, follow these instructions to get set up. Once you have your Python
distribution installed, make sure all the dependencies for Hyperion are installed:

sudo port selfupdate
sudo port install py27-numpy py27-matplotlib py27-h5py py27-astropy

If this works, you are all set, and you can move on to the actual Hyperion installation instructions.

System/python.org Python

Numpy and Matplotlib If you do not want to use MacPorts, the easiest way to install the two first dependencies is
to download and install the MacOS X dmg files for NumPy and Matplotlib. Use the links at the top of this section to
get the latest dmg files from the different websites. You can of course also install these from source, but this is beyond
the scope of this documentation.

Note: If you get an error saying x can’t be installed on this disk. x requires Python 2.7 from www.python.org to install,
then this means you are probably just using the system Python installation. Go to www.python.org and download the
2.7.2 version of Python, install, and try installing the packages again.

Check that the packages import correctly:

$ python
Python 2.7.2 (default, Jan 31 2012, 22:38:06)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> import matplotlib
>>>

If any of the packages are incorrectly installed, they will not import cleanly as above.

h5py Once Numpy and Matplotlib are installed, you will need to install h5py. First, you will need to install the
HDF5 library. Note that for the Fortran code, you also need to install the HDF5 library, but here we need to create a
clean installation without the fortran bindings, or else h5py will not install properly. Make sure that you perform the
following installation in a different directory from before, to avoid overwriting any files.

To install the plain HDF5 library download the source code from the latest HDF5 downloads (choose the hdf5-
x.x.x.tar.gz file), then expand the source code:

3.1. Installation 11

http://astrofrog.github.com/macports-python/
http://www.python.org
http://www.hdfgroup.org/ftp/HDF5/current/src/

Hyperion Manual, Release 0.9.2

tar xvzf hdf5-x.x.x.tar.gz
cd hdf5-x.x.x

and carry out the installation:

./configure --prefix=/usr/local/hdf5
make
sudo make install

Now, download the latest h5py-x.x.x.tar.gz package from the h5py website, and do:

tar xvzf h5py-x.x.x.tar.gz
cd h5py-x.x.x
python setup.py build --api=18 --hdf5=/usr/local/hdf5
python setup.py install

Now, go back to your home directory, and check that h5py imports cleanly:

$ python
Python 2.7.2 (default, Jan 31 2012, 22:38:06)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import h5py
>>>

Astropy Finally, if needed, install Astropy by going to the Astropy homepage and downloading the latest stable
version. Then, expand the tar file and install using:

tar xvzf astropy-x.x.tar.gz
cd astropy-x.x
python setup.py install

Finally, check that Astropy imports cleanly:

$ python
Python 2.7.2 (default, Jan 31 2012, 22:38:06)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import astropy
>>>

Note: For instructions for specific computer clusters, see the specific instead, then proceed to the instructions for
installing Hyperion below.

3.1.2 Hyperion

Download the latest tar file from here, then expand it with:

tar xvzf hyperion-x.x.x.tar.gz
cd hyperion-x.x.x

Python module

Install the Python module with:

12 Chapter 3. Documentation

http://code.google.com/p/h5py/
http://www.astropy.org
https://github.com/hyperion-rt/hyperion/downloads

Hyperion Manual, Release 0.9.2

python setup.py install

or:

python setup.py install --user

if you do not have root access. Check that the module installed correctly:

$ python
Python 2.7.2 (default, Jan 31 2012, 22:38:06)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hyperion
>>>

and also try typing:

$ hyperion

in your shell. If you get command not found, you need to ensure that the scripts installed by Python are in your
$PATH. If you do not know where these are located, check the last line of the install command above, which should
contain something like this:

changing mode of /Users/tom/Library/Python/2.7/bin/hyperion to 755

The path listed (excluding hyperion at the end) should be in your $PATH.

Fortran binaries

Compile the Fortran code with:

./configure
make
make install

By default, the binaries will be written to /usr/local/bin (which will require you to use sudo for the last
command), but you can change this using the --prefix option to configure, for example:

./configure --prefix=/usr/local/hyperion

or:

./configure --prefix=$HOME/usr

To check that the Fortran binaries are correctly installed, try typing:

$ hyperion_sph
Usage: hyperion input_file output_file

If you get:

$ hyperion_sph
hyperion_sph: command not found

then something went wrong in the installation, or the directory to which you installed the binaries is not in your
$PATH. Otherwise, you are all set!

3.1. Installation 13

Hyperion Manual, Release 0.9.2

3.2 Setting up models

The easiest way to set up models is via the Hyperion Python package. To set up models, you will need to create a
Python script, and populate it using the information in this and following sections. Once you have written the script
(e.g. setup_model.py), you can run it using:

python setup_model.py

You should start by choosing the type of model you want to set up. At the moment, you can either set up an arbitrary
model (which allows you to use an arbitrary grid and density structure), or an analytical YSO model, which is specif-
ically models with fixed density structures such as disks, envelopes, bipolar cavities, and defined on a spherical or
cylindrical polar grid. Other kinds of convenience models may be added in future (and contributions are welcome!).

Once you have decided on the type of model, you will need to set up the grid, sources, dust properties, density structure,
image and SED parameters, and choose the settings for the radiative transfer algorithm.

The following pages give instructions on setting up the two main kinds of models:

3.2.1 Arbitrary Models

Note: The current document only shows example use of some methods, and does not discuss all the options available.
To see these, do not hesitate to use the help command, for example help m.write will return more detailed
instructions on using the write method.

To create a general model, you will need to first import the Model class from the Python Hyperion module:

from hyperion.model import Model

it is then easy to set up a generic model using:

m = Model()

The model can then be set up using methods of the Model instance. These are described in the following sections.

Preparing dust properties

Arguably one of the most important inputs to the model are the dust properties. At this time, Hyperion supports
anisotropic wavelength-dependent scattering of randomly oriented grains, using a 4-element Mueller matrix (Chan-
drasekhar 1960; Code & Whitney 1995). See Section 2.1.3 of Robitaille (2011) for more details.

Note: Because the choice of a dust model is very important for the model, no ‘default’ dust models are provided with
Hyperion, as there is no single sensible default. Instead, you can set up any dust model using the instructions below.
In future, a database of published and common dust models will be provided. If you are not sure which dust model to
use, or are not familiar with opacities, albedos, and scattering phase functions, you are strongly encouraged to team
up with someone who is an expert on the topic of dust, as this should not be left to chance!

There are several ways to set up the dust properties that you want to use, and these are detailed in sections below.
In all cases, setting up the dust models is done by first creating an instance of a specific dust class, then setting the
properties, and optionally writing out the dust properties to a file:

from hyperion.dust import SphericalDust
d = SphericalDust()

14 Chapter 3. Documentation

http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201117150&Itemid=129

Hyperion Manual, Release 0.9.2

< set dust properties here >
d.write(’mydust.hdf5’)

Note: Carefully look at the warnings that are raised when writing the dust file, as these may indicate issues that will
have an impact on the radiative transfer. See Common warnings for more details.

It is also possible to plot the dust properties:

d.plot(’mydust.png’)

which gives a plot that can be used to get an overview of all the dust properties:

3.2. Setting up models 15

Hyperion Manual, Release 0.9.2

Important note on units

In all of the following sections, quantities should be specified in the cgs system of units (e.g. cm2/g for the opacities).
Whether the opacities are specified per unit mass of dust or gas is not important, as long as the densities specified
when setting up the geometry are consistent. For example, if the opacities are specified per unit dust mass, the
densities specified when setting up the model should be dust densities.

16 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Dust with isotropic scattering

Creating a dust object with isotropic scattering properties is very simple. First, import the IsotropicDust class:

from hyperion.dust import IsotropicDust

and create and instance of the class by specifying the frequency, albedo, and opacity to extinction (absorption +
scattering):

d = IsotropicDust(nu, albedo, chi)

where nu, albedo, and chi should be specified as lists or 1-d Numpy arrays, and nu should be monotonically
increasing. The albedo values should all be in the range 0 to 1, and the chi values should be positive. The
scattering matrix elements will be set to give isotropic scattering, and the emissivities and mean opacities will be set
assuming local thermodynamic equilibrium.

Dust with Henyey-Greenstein scattering

Creating a dust object with Henyey-Greenstein scattering properties is very similar to isotropic scattering, with the
exception that the scattering parameters have to be specified. The scattering is anisotropic, and the phase function is
defined by analytical functions (Henyey & Greenstein, 1941).

First, import the HenyeyGreensteinDust class:

from hyperion.dust import HenyeyGreensteinDust

and create an instance of the class by specifying the frequency, albedo, opacity to extinction (absorption + scattering),
and the anisotropy factor and the maximum polarization:

d = HenyeyGreensteinDust(nu, albedo, chi, g, p_lin_max)

where nu, albedo, chi, g and p_lin_max should be specified as lists or 1-d Numpy arrays, and nu should be
monotonically increasing. The albedo values should all be in the range 0 to 1, and the chi values should be positive.
The scattering matrix elements will be set to give the correct phase function for the scattering properties specified, and
the emissivities and mean opacities will be set assuming local thermodynamic equilibrium.

Fully customized 4-element dust

While the Henyey-Greenstein scattering phase function allows for anisotropic scattering, it approximates the phase
function by analytical equations. In some cases, it is desirable to instead use the full numerical phase function which
can be arbitrarily complex.

To set up a fully customized 4-element dust model, first import the SphericalDust class (this actually refers to
any kind of dust that would produce a 4-element scattering matrix, including randomly oriented non-spherical grains):

from hyperion.dust import SphericalDust

Then create an instance of this class:

d = SphericalDust()

Now that you have a dust ‘object’, you will need to set the optical properties of the dust, which include the albedo and
extinction coefficient (in cgs) as a function of frequency (in Hz):

d.optical_properties.nu = nu
d.optical_properties.albedo = albedo
d.optical_properties.chi = chi

3.2. Setting up models 17

http://dx.doi.org/10.1086/144246

Hyperion Manual, Release 0.9.2

where nu, albedo, and chi should be specified as lists or 1-d Numpy arrays, and nu should be monotonically
increasing. The albedo values should all be in the range 0 to 1, and the chi values should be positive.

Once these basic properties are set, you will need to set the scattering properties by setting the matrix elements. These
should be specified as a function of the cosine of the scattering angle, mu. The values of mu should be specified as a
1-d Numpy array:

d.optical_properties.mu = mu

Once nu and mu are set, the values of the scattering matrix elements can be set. These are stored in variables named
using the convention of Code & Whitney (1995): P1 (equivalent to S11), P2 (equivalent to S12), P3 (equivalent to
S44), and P4 (equivalent to -S34). Each of these variables should be specified as a 2-d array with dimensions (n_nu,
n_mu), where n_nu is the number of frequencies, and n_mu is the number of values of the cosine of the scattering
angle:

d.optical_properties.P1 = P1
d.optical_properties.P2 = P2
d.optical_properties.P3 = P3
d.optical_properties.P4 = P4

Alternatively, it is possible to call:

d.optical_properties.initialize_scattering_matrix()

After which P1, P2, P3, and P4 will be set to arrays with the right dimensions, and with all values set to zero. You
could for example set up an isotropic scattering matrix by setting the values of the arrays:

d.optical_properties.P1[:, :] = 1.
d.optical_properties.P2[:, :] = 0.
d.optical_properties.P3[:, :] = 1.
d.optical_properties.P4[:, :] = 0.

If nothing else is specified, the dust emissivity will be set assuming local thermodynamic equilibrium (i.e. it will be
set to the opacity to absorption times Planck functions).

Emissivities

By default, emissivities and mean opacities will be calculated under the assumption of local thermodynamic equilib-
rium for 1200 dust temperatures between 0.1 and 100000K, but this can be customized, as described below.

LTE emissivities To set the LTE emissivities manually, you can call the set_lte_emissivities method. For
example, to calculate the emissivities for 1000 temperatures between 0.1 and 2000K, you can do:

d.set_lte_emissivities(n_temp=1000,
temp_min=0.1,
temp_max=2000.)

The more temperatures the emissivities are calculated for, the more accurate the radiative transfer (Hyperion interpo-
lates between emissivities, rather the picking the closest one) but the slower the dust file will be to generate and read
into Hyperion.

Custom emissivities If you want to specify fully customized emissivities as a function of specific energy, you can
instead do this by directly accessing the variables, which are stored as attributes to d.emissivities, i.e.:

18 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

d.emissivities.nu
d.emissivities.var
d.emissivities.jnu
d.emissivities.var_name

The attribute nu should be set to a 1-d array giving the frequencies that the emissivities are specified for, var should
be set to another 1-d array containing the values of the specific energy the emissivities are defined for, and jnu should
be set to a 2-d array with dimensions (len(nu), len(var)) giving the emissivities. In addition, you will need
to set var_name to ’specific_energy’ (in future, other kinds of emissivity variables may be supported). For
example, to set a constant emissivity as a function of frequency and specific energy, you can do:

d.emissivities.nu = np.logspace(8., 16., 100) # 100 values between 10^8 and 10^16
d.emissivities.var = np.logspace(-2., 8., 20) # 20 values of the specific energy

between 10^-2 and 10^8
d.emissivities.jnu = np.ones(100, 20) # constant emissivities
d.emissivities.var_name = ’specific_energy’

Extrapolating optical properties

In some cases (see e.g. Common warnings) it can be necessary to extrapolate the dust properties to shorter and/or
longer wavelengths. While it would be preferable to do this extrapolation properly before passing the values to the
dust objects, in some cases the extrapolation is relatively straightforward, and you can make use of the following
extrapolation convenience functions:

d.optical_properties.extrapolate_wav(0.1, 1000)
d.optical_properties.extrapolate_nu(1.e5, 1.e15)

In the first case, the extrapolation is done by specifying wavelengths in microns, and in the second case by specifying
the frequency (in Hz).

The extrapolation is done in the following way:

• The opacity to extinction (chi) is extrapolated by fitting a power-law to the opacities at the two highest fre-
quencies and following that power law, and similarly at the lowest frequencies. This ensures that the slope of
the opacity remains constant.

• The albedo is extrapolated by assuming that the albedo is constant outside the original range, and is set to the
same value as the values for the lowest and highest frequencies.

• The scattering matrix is extrapolated similarly to the albedo, by simply extending the values for the lowest and
highest frequencies to the new frequency range.

The plots shown higher up on this page have made use of these extrapolation methods.

Common warnings

One of the most common warnings when computing the LTE emissivities or writing out a dust file is the following:

WARNING: Planck function for lowest temperature not completely covered by opacity function
WARNING: Planck function for highest temperature not completely covered by opacity function

The LTE emissivity is set to κνBν(T), so you need to ensure that the opacity is defined over a frequency large enough
to allow this to be calculated from the lowest to the highest temperatures used for the LTE emissivities. The default
range is quite large (0.1 to 100000K) so you can either reduce this range (see LTE emissivities) or you should define
the optical properties over a larger frequency range (see Extrapolating optical properties for one way to do this).

3.2. Setting up models 19

Hyperion Manual, Release 0.9.2

More specifically, the frequency range should extend almost three orders of magnitude above the peak frequency for
the coldest temperature, and one order of magnitude below the peak frequency for the hottest temperature. For the
default temperature range for the LTE emissivities (0.1 to 100000K), this means going from about 5e7 to 5e16Hz (or
0.5nm to 5m) which is a huge frequency range, over which dust properties are often not known. However, in most
cases, a sensible extrapolation of the properties you have should be fine - the plots shown higher up on this page show
the values extrapolated to the required range. If you restrict yourself to a smaller temperature range (e.g. 3 to 1600K)
you can also reduce the required range significantly.

Note: If you do not fix this warning, the normalization of the emissivities will be off, and the results from the radiative
transfer may be incorrect!

Writing dust files without the Python library

If for any reason you wish to write the HDF5 dust files directly without using the Hyperion Python library, you can
find a detailed description of the format in Dust HDF5 Format.

Coordinate grids and physical quantities

In general, coordinate grids and density grids are set using methods of the form:

from hyperion.model import Model
m = Model()
m.set_<grid_type>_grid(...)
m.add_density_grid(density, dust)

where <grid_type> is the grid type being used, and dust is a dust file in HDF5 format specified either by filename,
or as a dust object. See Preparing dust properties for more details about creating and using dust files. For example, if
you are using a dust file named kmh.hdf5, you can specify this with:

m.add_density_grid(density, ’kmh.hdf5’)

The add_density_grid method can be called multiple times if multiple density arrays are needed (for example if
different dust sizes have different spatial distributions).

Optionally, a specific energy distribution can also be specified in add_density_grid using the
specific_energy= argument:

m.add_density_grid(density, dust, specific_energy=specific_energy)

where specific_energy is given in the same format as density (see sections below).

Note: Specifying a specific energy distribution is only useful if the number of initial iterations for the RT code is set to
zero (see Radiative transfer settings), otherwise the input specific energy will be overwritten with the self-consistently
computed one.

Hyperion currently supports five types of 3-d grids:

• Cartesian grids

• Spherical polar grids

• Cylindrical polar grids

• AMR (Adaptive Mesh Refinement) grids

• Octree grids

20 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

The following sections show how the different kinds of grids should be set up.

Regular 3-d grids

Geometry In the case of the cartesian and polar grids, you should define the wall position in each of the three direc-
tions, using cgs units for the spatial coordinates, and radians for the angular coordinates. These wall positions should
be stored in one 1-d NumPy array for each dimension, with one element more than the number of cells defined. The
walls can then be used to create a coordinate grid using methods of the form set_x_grid(walls_1, walls_2,
walls_3). The following examples demonstrate how to do this for the various grid types

• A 10x10x10 cartesian grid from -1pc to 1pc in each direction:

x = np.linspace(-pc, pc, 11)
y = np.linspace(-pc, pc, 11)
z = np.linspace(-pc, pc, 11)
m.set_cartesian_grid(x, y, z)

• A 2-d 400x200x1 spherical polar grid with radial grid cells logarithmically spaced between one solar radius and
100AU, and the first grid cell wall located at 0:

r = np.logspace(np.log10(rsun), np.log10(100 * au), 400)
r = np.hstack([0., r]) # add cell wall at r=0
theta = np.linspace(0., pi, 201)
phi = np.array([0., 2 * pi])
m.set_spherical_polar_grid(r, theta, phi)

• A 3-d 100x100x10 cylindrical polar grid with radial grid cells logarithmically spaced between one solar radius
and 100AU, and the first grid cell wall located at 0:

w = np.logspace(np.log10(rsun), np.log10(100 * au), 100)
w = np.hstack([0., w]) # add cell wall at w=0
z = np.linspace(-10 * au, 10 * au, 101)
phi = np.linspace(0, 2 * pi, 11)
m.set_cylindrical_polar_grid(w, z, phi)

Note: Spherical and cylindrical polar grids do not have to start at r=0 or w=0, but you need to make sure that all
sources are located inside the grid. For example, if you place a point source at the origin, you will need the first grid
cell wall to be at r=0 or w=0. In the above cases, since the grid cell walls are distributed logarithmically, the first grid
cell wall has to be added separately, hence the use of hstack, which is used to add a 0 at the start of the array.

Density and Specific Energy For regular cartesian and polar grids, a 3-d NumPy array containing the density array
is required, for example:

m.add_density_grid(np.ones((100,100,100)), ’kmh.hdf5’)

for a 100x100x100 grid. Due to Numpy array conventions, the dimensions should be specified in reverse order, i.e.
(n_z, n_y, n_x) for a cartesian grid, (n_phi, n_theta, n_r) for a spherical polar grid, or (n_phi,
n_z, n_r) for a cylindrical polar grid.

Note that once you have set the grid geometry on a model, you can access variables that make it easy (if you wish) to
set up densities from analytical equations:

• m.grid.gx, m.grid.gy, and m.grid.gz for cartesian grids

• m.grid.gr, m.grid.gt, and m.grid.gp for spherical polar grids

• m.grid.gw, m.grid.gz, and m.grid.gp for cylindrical polar grids

3.2. Setting up models 21

Hyperion Manual, Release 0.9.2

These variables are the coordinates of the center of the cells, and each of these variables is a full 3-d array. For
example, m.grid.gx is the x position of the center of all the cells, and has the same shape as the density array needs
to have. In addition, the m.grid.shape variable contains the shape of the grid. This makes it easy to use analytical
prescriptions for the density. For example, to set up a sphere of dust with radius R in a cartesian grid, you could do:

density = np.zeros(m.grid.shape)
density[(m.grid.gx ** 2 + m.grid.gy ** 2 + m.grid.gz ** 2) < R ** 2] = 1.

This grid would have a density of 0 outside R, and 1 inside R. Note that of course you should probably be using a
spherical polar grid if you want to set up a sphere of dust, but the above example can be applied to more complicated
analytical dust structures.

AMR grids

Geometry AMR grids have to be constructed using the AMRGrid class:

from hyperion.grid import AMRGrid
amr = AMRGrid()

Levels can be added with:

level = amr.add_level()

And grids can be added to a level with:

grid = level.add_grid()

Grid objects have the following attributes which should be set:

• xmin - lower x position of the grid

• xmax - upper x position of the grid

• ymin - lower y position of the grid

• ymax - upper y position of the grid

• zmin - lower z position of the grid

• zmax - upper z position of the grid

• nx - number of cells in x direction

• ny - number of cells in y direction

• nz - number of cells in z direction

• quantities - a dictionary containing physical quantities (see below)

Once we have an AMR grid object, which we call amr here, the geometry can be set using:

m.set_amr_grid(amr)

The quantities attribute is unimportant for this step, as long as the geometry is correct.

For more details on how to create or read in an AMR object, and for a list of requirements and restrictions on the
geometry, see AMR Grids.

Density and Specific Energy Since AMR grids have a more complex structure than regular 3-d arrays, the density
should be added using an AMRGrid object. In this case, the quantity attribute should be set for each grid object.
For each physical quantity in the AMR grid, the dictionary should have an entry of the form:

22 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

grid.quantities[<quantity>] = quantity_array

where <quantity> is a string containing the name of the quantity (e.g. density) and quantity_array should
be a Numpy array with dimensions (grid.nz, grid.ny, grid.nx) (see AMR Grids for more details).

When calling add_density_grid, the density should be specified as an item of the AMRGrid object:

m.add_density_grid(amr_object[’density’], dust_file)

for example:

m.add_density_grid(amr[’density’], ’kmh.hdf5’)

Specific energies can be specified using the same kinds of objects and using the specific_energy argument:

m.add_density_grid(amr[’density], dust_file,
specific_energy=amr[’specific_energy’])

Note that in this example, the amr object contains the geometry, the density, and the specific energy (i.e. it is not
necessary to create a separate AMRGrid object for each one).

Octree grids

Geometry An Octree is a hierarchical grid format where each cell can be divided into eight children cells. At the
top level is a single cell that covers the whole spatial domain being considered. To set up an Octree, the following
information is needed:

• x, y, z - the coordinates of the center of the parent cell

• dx, dy, dz - the size of the parent cell

• refined a 1-d sequence of booleans giving the structure of the grid.

The refined sequence contains all the information regarding the hierarchy of the grid, and is described in Octree
Grids. Once this sequence is set, the geometry can be set with:

m.set_octree_grid(x, y, z, dx, dy, dz, refined)

Density and Specific Energy Densities (and optionally specific energies) should be specified in the same manner as
the regular grids, but should be specified as a 1-d Numpy array with the same length as the refined list, where each
density value corresponds to the equivalent cell in the refined list. Density values for cells with refined set to
True will be ignored, and can be set to zero.

Luminosity sources

General notes

Sources can be added to the model using methods of the form m.add_*_source(). For example adding a point
source can be done with:

source = m.add_point_source()

These methods return a source ‘object’ that can be used to set and modify the source parameters:

3.2. Setting up models 23

http://en.wikipedia.org/wiki/Octree

Hyperion Manual, Release 0.9.2

source = m.add_point_source()
source.luminosity = lsun
source.temperature = 10000.
source.position = (0., 0., 0.)

Note: It is also possible to specify the parameters using keyword arguments during initialization, e.g.:

m.add_point_source(luminosity=lsun, temperature=10000.,
position=(0., 0., 0.))

though this can be longer to read for sources with many arguments.

All sources require a luminosity, given by the luminosity attribute (or luminosity= argument), and the emission
spectrum can be defined in one of three ways:

• by specifying a spectrum using the spectrum attribute (or spectrum= argument). The spectrum should
either be a (nu, fnu) pair or an instance of an atpy.Table with two columns named ’nu’ and ’fnu’.
For example, given a file spectrum.txt with two columns listing frequency and flux, the spectrum can be
set using:

import numpy
spectrum = np.loadtxt(’spectrum.txt’, dtype=[(’nu’, float),

(’fnu’, float)])
source.spectrum = (spectrum[’nu’], spectrum[’fnu’])

• by specifying a blackbody temperature using the temperature attribute (or temperature= argument).
This should be a floating point value.

• by using the local dust emissivity if neither a spectrum or temperature are specified.

Note: By default, the number of photons emitted is proportional to the luminosity, so in cases where several sources
with very different luminosities are included in the models, some sources might be under-sampled. You can instead
change the configuration to emit equal number of photons from all sources - see Multiple sources for more details.

Point sources

A point source is defined by a luminosity, a 3-d cartesian position (set to the origin by default), and a spectrum or
temperature. The following examples demonstrate adding different point sources:

• Set up a 1 solar luminosity 10,000K point source at the origin:

source = m.add_point_source()
source.luminosity = lsun # [ergs/s]
source.temperature = 10000. # [K]

• Set up two 0.1 solar luminosity 1,300K point sources at +/- 1 AU in the x direction:

Set up the first source
source1 = m.add_point_source()
source1.luminosity = 0.1 * lsun # [ergs/s]
source1.position = (au, 0, 0) # [cm]
source1.temperature = 1300. # [K]

Set up the second source
source2 = m.add_point_source()
source2.luminosity = 0.1 * lsun # [ergs/s]

24 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

source2.position = (-au, 0, 0) # [cm]
source2.temperature = 1300. # [K]

• Set up a 10 solar luminosity source at the origin with a spectrum read in from a file with two columns giving
wavelength (in microns) and monochromatic flux:

Use NumPy to read in the spectrum
import numpy as np
data = np.loadtxt(’spectrum.txt’, dtype=[(’wav’, float), (’fnu’, float)])

Convert to nu, fnu
nu = c / (data[’wav’] * 1.e-4)
fnu = data[’fnu’]

Set up the source
source = m.add_point_source()
source.luminosity = 10 * lsun # [ergs/s]
source.spectrum = (nu, fnu)

Note: Regardless of the grid type, the coordinates for the sources should always be specified in cartesian coordinates,
and in the order (x, y, z).

Spherical sources

Adding spherical sources is very similar to adding point sources, with the exception that a radius can be specified:

source = m.add_spherical_source()
source.luminosity = lsun # [ergs/s]
source.radius = rsun # [cm]
source.temperature = 10000. # [K]

It is possible to add limb darkening, using:

source.limb = True

Spots on spherical sources

Adding spots to a spherical source is straightforward. Spots behave the same as other sources, requiring a luminosity,
spectrum, and additional geometrical parameters:

source = m.add_spherical_source()
source.luminosity = lsun # [ergs/s]
source.radius = rsun # [cm]
source.temperature = 10000. # [K]

spot = source.add_spot()
spot.luminosity = 0.1 * lsun # [ergs/s]
spot.longitude = 45. # [degrees]
spot.latitude = 30. # [degrees]
spot.radius = 5. # [degrees]
spot.temperature = 20000. # [K]

3.2. Setting up models 25

Hyperion Manual, Release 0.9.2

Diffuse sources

Diffuse sources are defined by a total luminosity, and a probability distribution map for the emission, defined on the
same grid as the density. For example, if the grid is defined on a 10x10x10 grid, the following will add a source which
emits photons from all cells equally:

source = m.add_map_source()
source.luminosity = lsun # [ergs/s]
source.map = np.ones((10, 10, 10))

Note: The map array does not need to be normalized.

External sources

There are two kinds of external illumination sources, spherical and box sources - the former being more suited to
spherical polar grids, and the latter to cartesian, AMR, and octree grids (there is no cylindrical external source for
cylindrical grids at this time). In both cases, photons are emitted inwards isotropically. For example, an external
spherical source can be added with:

source = m.add_external_spherical_source()
source.luminosity = lsun # [ergs/s]
source.radius = pc # [cm]
source.temperature = 10000. # [K]

As for point and spherical sources, the position of the center can also be set, and defaults to the origin. External box
sources have a bounds attribute instead of radius and position:

source = m.add_external_box_source()
source.luminosity = lsun # [ergs/s]
source.bounds = [[-pc, pc], [-pc, pc], [-pc, pc]] # [cm]
source.temperature = 10000. # [K]

where the bounds attribute is given as [[xmin, xmax], [ymin, ymax], [zmin, zmax]].

See How to set the luminosity for an external radiation field for information on setting the luminosity correctly in
order to reproduce a given intensity field.

Note: Even though these sources are referred to as ‘external’, they have to be placed inside the outermost walls of the
grid. The sources are not box-shared source or spherical source that can be placed outside the grid, but rather sources
that emit inwards instead of outwards, making it possible to simulate an external radiation field.

Plane parallel sources

Finally, it is possible to add circular plane parallel sources (essentially a circular beam with a given origin and direc-
tion):

source = m.add_plane_parallel_source()
source.luminosity = lsun # [ergs/s]
source.radius = rsun # [cm]
source.temperature = 10000. # [K]
source.position = (au, 0., 0.) # [cm]
source.direction = (45., 0.) # [degrees]

26 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

where direction is a tuple of (theta, phi) that gives the direction of the beam.

Setting up images and SEDs

There are two main kinds of images/SEDs that can be produced for each model: images/SEDs computed by binning
the photons as they escape from the density grid, and images/SEDs computed by peeling off photon packets at each
interaction into well defined directions. The latter provide more accurate SEDs and much better signal-to-noise, and
are likely to be more commonly used than the former.

The code currently allows at most one set of binned images, and any number of sets of peeled images. A set is defined
by a wavelength range, image resolution and extent, and any number of viewing angles.

Creating a set of images

To add a set of binned images/SEDs to the model, use:

image = m.add_binned_images()

and to create a set of peeled images/SEDs to the model, use:

image = m.add_peeled_images()

Only one set of binned images can be added, but any number of sets of peeled image can be added. In general, peeled
images are recommended because binned images suffer from low signal-to-noise, and angle averaging of images.

The wavelength range (in microns) for the images/SEDs should be specified using:

image.set_wavelength_range(n_wav, wav_min, wav_max)

The image size in pixels and the extent of the images should be specified using:

image.set_image_size(n_x, n_y)
image.set_image_limits(xmin, xmax, ymin, ymax)

where the image limits should be given in cm. The apertures for the SEDs can be specified using:

image.set_aperture_range(n_ap, ap_min, ap_max)

where the apertures should be given in cm. If this is not specified, the default is to have one aperture with infinite size,
i.e. measuring all the flux.

For binned images, the number of bins in the theta and phi direction should be specified using:

image.set_viewing_bins(10, 10)

whereas for peeled images, the viewing angles should be specified as lists or arrays of theta and phi values, in degrees.
For example, the following produces images from pole-on to edge-on at constant phi using 20 viewing angles:

Set number of viewing angles
n_view = 20

Generate the viewing angles
theta = np.linspace(0., 90., n_view)
phi = np.repeat(45., n_view)

Set the viewing angles
image.set_viewing_angles(theta, phi)

3.2. Setting up models 27

Hyperion Manual, Release 0.9.2

Note: For peeled images, the number of viewing angles directly impacts the performance of the code - once the
specific energy/temperature has been computed, the code will then run approximately in a time proportional to the
number of viewing angles.

Uncertainties

Uncertainties can be computed for SEDs/images (doubling the memory/disk space required):

image.set_uncertainties(True)

File output

Finally, to save space, images can be written out as 32-bit floats instead of 64-bit floats. To write them out as 32-bit
floats, use:

image.set_output_bytes(4)

and to write them out as 64-bit floats, use:

image.set_output_bytes(8)

Tracking photon origin

SEDs/images can also be split into emitted/thermal or scattered components from sources or dust (4 combinations).
To activate this, use:

image.set_track_origin(’basic’)

It is also possible to split the SED into individual sources and dust types:

image.set_track_origin(’detailed’)

For example, if five sources and two dust types are present, there will be 14 components in total: five for photons
emitted from sources, two for photons emitted from dust, five for photons emitted from sources and subsequently
scattered, and two for photons emitted from dust and subsequently scattered.

See Post-processing models for information on how to extract this information from the output files.

Note: If you are using the AnalyticalYSOModel class and are interested in separating the disk, envelope, and
other components, but are using the same dust file for the different components, these will by default be merged prior
to the radiative transfer calculation, so you will need to set merge_if_possible=False when calling write()
to prevent this (see write() for more information).

Disabling SEDs or Images

When adding a set of binned or peeled images, it is possible to disable the SED or image part:

28 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

image = m.add_binned_images() # Images and SEDs
image = m.add_binned_images(image=False) # SEDs
image = m.add_binned_images(sed=False) # Images

image = m.add_peeled_images() # Images and SEDs
image = m.add_peeled_images(image=False) # SEDs
image = m.add_peeled_images(sed=False) # Images

Advanced

A few more advanced parameters are available for peeled images, and these are described in Advanced settings for
peeled images.

Example

The following example creates two sets of peeled SEDs/images. The first is used to produce an SED with 250 wave-
lengths from 0.01 to 5000. microns with uncertainties, and the second is used to produce images at 5 wavelengths
between 10 and 100 microns, with image size 100x100 and extending +/-1pc in each direction:

image1 = m.add_peeled_images(image=False)
image1.set_wavelength_range(250, 0.01, 5000.)
image1.set_uncertainties(True)

image2 = m.add_peeled_images(sed=False)
image2.set_wavelength_range(5, 10., 100.)
image2.set_image_size(100, 100)
image2.set_image_limits(-pc, +pc, -pc, +pc)

Radiative transfer settings

Once the coordinate grid, density structure, dust properties, and luminosity sources are set up, all that remains is to
set the parameters for the radiation transfer algorithm, including number of photons to use, or whether to use various
optimization schemes.

Number of photons

The number of photons to run in various iterations is set using the following method:

m.set_n_photons(initial=1000000, imaging=1000000)

where initial is the number of photons to use in the iterations for the specific energy (and therefore temperature),
and imaging is the number of photons for the SED/image calculation, whether using binned images/SEDs or peeling-
off.

In addition, the stats= argument can be optionally specified to indicate how often to print out performance statistics
(if it is not specified a sensible default is chosen).

Since the number of photons is crucial to produce good quality results, you can read up more about setting sensible
values at Choosing the number of photons wisely.

3.2. Setting up models 29

Hyperion Manual, Release 0.9.2

Specific energy calculation

To set the number of initial iterations used to compute the dust specific energy, use e.g.:

m.set_n_initial_iterations(5)

Note that this can also be zero, in which case the temperature is not solved, and the radiative transfer calculation
proceeds to the image/SED calculation (this is useful for example if one is making images at wavelengths where
thermal emission is negligible, or if a specific energy/temperature was specified as input).

It is also possible to tell the radiative transfer algorithm to exit these iterations early if the specific energy has converged.
To do this, use:

m.set_convergence(True, percentile=100., absolute=0., relative=0.)

where the boolean value indicates whether to use convergence detection (False by default), and percentile,
absolute, and relative arguments are explained in more detail in Section 2.4 of Robitaille (2011). For the
benchmark problems of that paper, the values were set to:

m.set_convergence(True, percentile=99., absolute=2., relative=1.02)

which are reasonable starting values. Note that if you want to use convergence detection, you should make sure that the
value for set_n_initial_iterations is not too small, otherwise the calculation might stop before converging.
When running the main Hyperion code, convergence statistics are printed out, and it is made clear when the specific
energy has converged.

Raytracing

To enable raytracing (for source and dust emission, but not scattering), simply use:

m.set_raytracing(True)

This algorithm is described in Section 2.6.3 of Robitaille (2011). If raytracing is used, you will need to add the
raytracing_sources and raytracing_dust arguments to the call to set_n_photons, i.e.:

m.set_n_photons(initial=1000000, imaging=1000000,
raytracing_sources=1000000, raytracing_dust=1000000)

Diffusion

If the model density contains regions of very high density where photons get trapped or do not enter, one can enable
the modified random walk (MRW; Min et al. 2009, Robitaille 2010) in order to group many photon interactions into
one. The MRW requires a parameter gamma which is used to determine when to start using the MRW (see Min et
al. 2009 for more details). By default, this parameter is set to 1. The following example shows how to enable the
modified random walk, and set the gamma parameter to 2:

m.set_mrw(True, gamma=2.)

In some cases (such as protoplanetary disks) very optically thick regions do not receive any radiation. In cases where
the temperature in these regions is important, one can use the partial diffusion approximation (PDA; Min et al. 2009)
to solve the diffusion equation over the grid and find the missing temperatures:

m.set_pda(True)

Note however that if more than 10,000 cells have low photon counts and require the PDA, this can be very slow, so
this option is only recommended in cases where you know it is absolutely needed. In most cases, if photons cannot
reach inside certain cells, these cells are unlikely to be contributing a significant amount of flux to SEDs or images.

30 Chapter 3. Documentation

http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201117150&Itemid=129\T1\textgreater {}
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201117150&Itemid=129\T1\textgreater {}
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...497..155MFUL
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201015025&Itemid=129
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...497..155MFUL
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...497..155MFUL
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...497..155MFUL

Hyperion Manual, Release 0.9.2

Dust sublimation

To set whether and how to sublimate dust, first the dust file needs to be read in (or initialized in the script), the
sublimation parameters should be set, and the dust object should be passed directly to add_density:

from hyperion.dust import SphericalDust

d = SphericalDust(’kmh.hdf5’)
d.set_sublimation_temperature(’fast’, temperature=1600.)

m.add_density_grid(density, d)

The first argument of set_sublimation_temperature can be none (dust sublimation does not occur), cap
(temperatures in excess of the one specified will be reset to the one given), slow (dust with temperatures in excess of
the one specified will be gradually destroyed), or fast (dust with temperatures in excess of the one specified will be
immediately destroyed). For more information, see Section 2.7.3 of Robitaille (2011).

Multiple sources

By default, the number of photons emitted is proportional to the luminosity of the sources, so in cases where several
sources with very different luminosities are included in the models, some sources might be under-sampled. In some
cases, this will not be a problem, but in some cases you may want to emit equal numbers of photons from each source
instead. For example, if you have two sources that have a bolometric luminosity that is different by a factor of 100, but
at the specific wavelength you are interested in they have the same flux, then you will probably want equal numbers of
photons for both sources. You can enable this with:

m.set_sample_sources_evenly(True)

Outputting physical quantities

It is possible to write out a number of physical arrays for each iteration, or just the last iteration. To do this, you will
need to set the parameters in Models.conf.output:

Density
m.conf.output.output_density = ’last’

Density difference (shows where dust was destroyed)
m.conf.output.output_density_diff = ’none’

Energy absorbed (using pathlengths)
m.conf.output.output_specific_energy = ’last’

Number of unique photons that passed through the cell
m.conf.output.output_n_photons = ’last’

Each value can be set to all (output all iterations), last (output only after last iteration), or none (do not output).
The default is to output only the last iteration of specific_energy. To find out how to view these values, see
Post-processing models

Advanced parameters

There are a number of more advanced parameters to control the radiative transfer, but since they are not essential
initially, they are described in the Advanced configuration section.

3.2. Setting up models 31

http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201117150&Itemid=129\T1\textgreater {}

Hyperion Manual, Release 0.9.2

Once the model is set up, you can write it out to the disk for use with the Fortran radiation transfer code:

m.write(’example.rtin’)

See write() for information about the available options.

3.2.2 Analytical YSO Models

The Arbitrary Models class should allow users to set up arbitrary problems. However, the Python module also provides
classes that build on top of Model that make it easy to specify certain kinds of problems. These classes support all
the methods available for the Model class, and define new ones. The AnalyticalYSOModel makes it easy to set
up sources with flared disks, and rotationally flattened envelopes, optionally with bipolar cavities. To use this class,
you will first need to import it:

from hyperion.model import AnalyticalYSOModel

it is then easy to set up such a model using:

m = AnalyticalYSOModel()

The model can then be set up using methods of the AnalyticalYSOModel instance. This is described in more
detail in the following section:

Setting up a YSO model

Source parameters

The stellar luminosity and radius should be set via the following attributes:

m.star.luminosity = 5 * lsun
m.star.radius = 2 * rsun

and either the temperature or the spectrum of the source can be set, using:

m.star.temperature = 10000.

or:

m.star.spectrum = (nu, fnu)

Flared disks

Flared disks can be added using the add_flared_disk() method, and capturing the reference to the
FlaredDisk object to set the parameters further:

disk = m.add_flared_disk()
disk.mass = 0.01 * msun # Disk mass
disk.rmin = 10 * rsun # Inner radius
disk.rmax = 300 * au # Outer radius
disk.r_0 = 100. * au # Radius at which h_0 is defined
disk.h_0 = 5 * au # Disk scaleheight at r_0
disk.p = -1 # Radial surface density exponent
disk.beta = 1.25 # Disk flaring power

32 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Envelopes

Power-law spherically symmetric envelope The simplest kind of envelope is a spherically symmetric envelope with
a power-law distribution in density. A power-law envelope can be added using the add_power_law_envelope()
method, and capturing the reference to the PowerLawEnvelope object to set the parameters further:

envelope = m.add_power_law_envelope()
envelope.mass = 0.1 * msun # Envelope mass
envelope.rmin = au # Inner radius
envelope.rmax = 10000 * au # Outer radius
envelope.power = -2 # Radial power

Ulrich rotationally flattened envelope A more complex envelope density distribution is that of Ulrich
(1976), which consists of a rotationally flattened envelope. A power-law envelope can be added using the
add_ulrich_envelope() method, and capturing the reference to the UlrichEnvelope object to set the pa-
rameters further:

envelope = m.add_ulrich_envelope()
envelope.mdot = 1e-4 * msun / yr # Infall rate
envelope.rmin = 0.1 * au # Inner radius
envelope.rc = 100 * au # Centrifugal radius
envelope.rmax = 1000 * au # Outer radius

Note: the Ulrich (1976) solution is sometimes (incorrectly) referred to as the Terebey, Shu, and Cassen (TSC)
solution, which is much more complex. The Ulrich envelope implemented here is the same envelope type as is often
implemented in other radiation transfer codes.

Bipolar cavities

Once an envelope has been created, bipolar cavities can be carved out in it by calling the add_bipolar_cavities
method on the envelope object, which returns a BipolarCavity instance:

cavity = envelope.add_bipolar_cavities()
cavity.power = 1.5 # Shape exponent z~w^exp
cavity.r_0 = 1.e-20 # Radius to specify rho_0 and theta_0
cavity.theta_0 = 10 # Opening angle at r_0 (degrees)
cavity.rho_0 = 1.e-20 # Density at r_0
cavity.rho_exp = 0. # Vertical density exponent

Accretion

Viscous dissipation
Note: This feature is still experimental, please use with caution and report any issues!

To simulate the effects of accretion due to viscous dissipation of energy in the disk, you can use an ‘alpha accretion’
disk instead of a plain flared disk. Such disks can be added using the add_alpha_disk() method, and capturing
the reference to the AlphaDisk object to set the parameters further. The parameters are the same as for flared disks:

disk = m.add_alpha_disk()
disk.mass = 0.01 * msun # Disk mass
disk.rmin = 10 * rsun # Inner radius
disk.rmax = 300 * au # Outer radius

3.2. Setting up models 33

Hyperion Manual, Release 0.9.2

disk.r_0 = 100. * au # Radius at which h_0 is defined
disk.h_0 = 5 * au # Disk scaleheight at r_0
disk.p = -1 # Radial surface density exponent
disk.beta = 1.25 # Disk flaring power

except that the accretion properties of the disk can also be specified. Either the disk accretion rate can be specified:

disk.mdot = 1e-6 * msun / yr # Disk accretion rate

or the accretion luminosity from viscous dissipation:

disk.lvisc = 0.01 * lsun

Note that this accretion luminosity only includes the luminosity down to disk.rmin, and does not include the
luminosity from the stellar surface (see Magnetospheric accretion). For more details on the accretion luminosity from
viscous dissipation, see AlphaDisk.

Magnetospheric accretion
Note: This feature is still experimental, please use with caution and report any issues!

Another important component of the accretion luminosity is that from the dissipation of energy as matter accretes onto
the central star from the inner edge of the gas disk. In a simplistic model of magnetospheric accretion, matter free-falls
from the radius at which the disk is truncated by the magnetosphere to the surface of the star. Half the energy goes
into X-rays, and half goes into heating spots on the stellar surface, and is then re-emitted with a spectrum hotter than
the rest of the stellar surface.

To help set this up, a convenience method setup_magnetospheric_accretion() is provided, which takes
the accretion rate, the radius at which the matter free-falls from, the spot covering fraction, and optionally parameters
describing the X-ray spectrum. For example:

m.setup_magnetospheric_accretion(1.e-6 * msun / yr, 5 * m.star.radius, 0.2)

will set up an X-ray and a hot spot emission component from the central source. The method does not currently
set up actual spots, it assumes that the spots cover the star uniformly, and the spot covering fraction determines the
temperature of the hot spots (a smaller covering fraction results in a larger hot spot temperature for a fixed accretion
rate).

See setup_magnetospheric_accretion() for more details.

Dust

The dust file to use for each component should be specified using the dust attribute for the component, e.g.:

disk.dust = ’www003.hdf5’
envelope.dust = ’kmh.hdf5’
cavity.dust = ’kmh_hdf5’

The dust can be specified either as a filename or an instance of one of the dust types.

Grid

The gridding of the density can done automatically, but you will need to specify a grid size. Either a spherical polar or
cylindrical polar grid can be used. To use the spherical polar grid:

34 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

m.set_spherical_polar_grid_auto(n_r, n_theta, n_phi)

and to use the cylindrical polar grid:

m.set_cylindrical_polar_grid_auto(n_w, n_z, n_phi)

The grid is set up in such a way as to provide very fine resolution at the inner edge of the disk or envelope, and
logarithmic spacing of cell walls on large scales.

In some cases, this automated gridding may not be appropriate, and you may want to specify the grid geom-
etry yourself, for example if you have other sources of emission than the one in the center. In this case, the
set_spherical_polar_grid() and set_cylindrical_polar_grid() methods described in Coordi-
nate grids and physical quantities can be used. As a reminder, these take the position of the walls as arguments rather
than the number of cells, e.g.:

r = np.logspace(np.log10(rsun), np.log10(100 * au), 400)
r = np.hstack([0., r]) # add cell wall at r=0
theta = np.linspace(0., pi, 201)
phi = np.array([0., 2 * pi])
m.set_spherical_polar_grid(r, theta, phi)

Optically thin temperature radius

When setting up the disk or envelope inner/outer radii, it can sometimes be useful to set it to a ‘dynamic’ quantity such
as the sublimation radius of dust. A convenience class is available for this purpose:

from hyperion.util.convenience import OptThinRadius

The OptThinRadius class allows you to simply specify a temperature Td, and when preparing the model, the code
will pick the radius at which the temperature would be equal to the value specified if the dust was optically thin:

r = r?

{
1−

[
1− 2

T 4
d

T 4
eff

κplank(Td)

κ?

]2
}−1/2

where Teff,? is the effective temperature of the central source, and κ?) is the mean opacity to a radiation field with the
spectrum of the central source. In practice, you can use this as follows:

disk = m.add_flared_disk()
disk.mass = 0.01 * msun
disk.rmin = OptThinRadius(1600.)
disk.rmax = 300. * au
...

and the inner disk radius will be set to the radius at which the optically thin temperature would have fallen to 1600K,
emulating dust sublimation.

To set up the dust, images, and configuration, see the Preparing dust properties, Setting up images and SEDs, and
Radiative transfer settings sections of the Arbitrary Models description.

Once the model is set up, you can write it out to the disk for use with the Fortran radiation transfer code:

m.write(’example.rtin’)

See write() for information about the available options.

3.2. Setting up models 35

Hyperion Manual, Release 0.9.2

Note: One of the available options is merge_if_possible=, which if set to True will merge the various density
components into a single one if the dust types match. This allows the code to run faster, but on the other hand means
that if tracking e.g. photon origin, the separate origin of components that have been merged will be lost. This option
is enabled by default, but you may want to disable it.

And the following pages give details and advice on particular configuration settings:

3.2.3 Choosing the number of photons wisely

Note: This section is incomplete at this time, and only covers choosing the photon numbers for the specific en-
ergy/temperature calculation.

As described in Radiative transfer settings and Advanced configuration, the number of photons should be set with the:

m.set_n_photons(...)

method. The arguments to specify depend on the type of calculation

Specific Energy/Temperature

The number of photons used in the initial specific energy calculation is set with the initial= keyword argument. A
good starting value for this if the density grid is close to optically thin is to set it to be at least the number of cells in
the grid. If the optical depth is much larger, e.g. in the case of protoplanetary disks, one may need to choose 10 or 100
times the number of cells in order to get a good signal-to-noise.

The best way to check whether an adequate value has been chosen is to extract the specific energy or temperature grids
as described in Extracting physical quantities, and to visualize these. The following image shows an example of the
specific energy in an azimuthally symmetric cylindrical grid (i.e. showing z vs r) where the initial number of photons
is too low. Individual photon propagation paths can be seen, and the temperature map is very poorly defined.

36 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

If the temperature is increased, then the temperature map becomes smoother, though in the densest regions, the tem-
perature is still very noisy:

Once it is not possible to realistically increase the number of photons without running into computational limitations,
one can instead resort to using the PDA approximation (described in Diffusion) to compute the missing temperature
values in the most optically thick regions.

3.2. Setting up models 37

Hyperion Manual, Release 0.9.2

Note: it is possible to write model input files yourself directly in HDF5 and bypass the Python library entirely (but
this is reserved for advanced users!). See Model Input HDF5 Format for more information.

3.3 Running models

3.3.1 Using the hyperion command-line wrapper

Once an .rtin file has been created (see Setting up models), the model can be run using the compiled Fortran code.
Note that the model can be run on a different computer/cluster to the computer on which is was set up, because the
.rtin files are portable.

The easiest way to run a model is to invoke the hyperion command-line utility, specifying the input and output file
(we use the .rtout extensions for output files):

hyperion model.rtin model.rtout

Note: hyperion is a command-line Python wrapper around the Fortran binaries that gets installed with the Python
Hyperion library.

To run Hyperion in parallel, you can use:

hyperion -m <n_processes> model.rtin model.rtout

where <n_processes> is the number of processes to run in parallel (does not need to equal the number of cores in
the computer or cluster). For example, to run the code over 24 processes, you can use:

38 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

hyperion -m 24 model.rtin model.rtout

This may not work with all MPI installations. If you have issues, see the next section on calling the Fortran binaries
directly (and report the issue).

3.3.2 Calling the Fortran binaries directly

hyperion is in fact a wrapper to grid specific binaries:

• hyperion_car and hyperion_car_mpi for cartesian grids

• hyperion_cyl and hyperion_cyl_mpi for cylindrical polar grids

• hyperion_sph and hyperion_sph_mpi for spherical polar grids

• hyperion_amr and hyperion_amr_mpi for AMR grids

• hyperion_oct and hyperion_oct_mpi for Oct-tree grids

These binaries can be called directly instead of the hyperion wrapper. For example, to run a model with a cartesian
grid in serial, you would use:

hyperion_car model.rtin model.rtout

To use the parallel version of the code, use the relevant binary, with the _mpi suffix appended, and launch it using the
command relevant to your MPI installation, for example:

mpirun -n 128 hyperion_car_mpi model.rtin model.rtout

This can also be mpiexec or openmpirun or openmpiexec depending on your MPI installation.

3.3.3 Running the model from the Python scripts

It is also possible to run the serial version of the code directly from the set-up script, by doing:

m = Model()
...
m.write(’model.rtin’)
m.run(’model.rtout’)

To run in parallel, simply do:

m.run(’model.rtout’, mpi=True, n_processes=<n_processes>)

As for the hyperion command-line wrapper, this may not work with all MPI installations.

3.3.4 Overwriting existing output

By default, if the output file already exists, a confirmation message is shown:

WARNING: File exists: test.rtout
The following command will be run: rm test.rtout
Do you wish to continue? (y/n)

However, this is not always desirable (for example when submitting jobs to clusters). To overwrite an existing output
file, then use the -f option when calling hyperion or on of the hyperion_* commands:

3.3. Running models 39

http://www.github.com/hyperion-rt/hyperion/issues

Hyperion Manual, Release 0.9.2

$ hyperion -f input output

of use the overwrite=True argument when using Model.run:

m.run(’model.rtout’, overwrite=True)

3.4 Post-processing models

You’ve successfully set up and run your model, but now you want to extract the results and do something useful with
them. The following sections describe how to retrieve observables (SEDs and images) and quantities (such as density
and temperature).

3.4.1 Extracting SEDs and Images

The first step to extracting SEDs and images from the models is to create an instance of the ModelOutput class,
giving it the name of the output file:

from hyperion.model import ModelOutput
m = ModelOutput(’simple_model.rtout’)

SEDs

To extract SEDs, use the get_sed() method:

sed = m.get_sed()

A number of arguments can be passed to get_sed(), for example to select specific Stokes parameters, inclinations,
apertures, to scale the SED to a specific distance, to convert it to certain units, to extract the SED originating from
different components, etc. For full details about the available arguments, see the get_sed() documentation. The
method returns a single SED object that contains e.g. the wavelengths (sed.wav), frequencies (sed.nu), values
(i.e. fluxes, flux densities, or polarization values; sed.val), and optionally uncertainties (sed.unc). See SED for
the full list of the available attributes.

By default, the I stokes parameter is returned for all inclinations and apertures, and sed.val is a data cube with
three dimensions (inclinations, apertures, and wavelengths respectively). If an aperture or an inclination is specified,
that dimension is removed from the array. Thus, specifying both inclination and aperture makes sed.val a one-
dimensional array.

The default units are microns for sed.wav and ergs/s for sed.val. If a distance is specified when extracting the
SED, sed.val is in ergs/cm^2/s by default.

If uncertainties are requested, then sed.unc is set, which is uncertainty array with the same dimensions and units as
sed.val:

sed = m.get_sed(uncertainties=True)

See Plotting and writing out SEDs for an example of extracting SEDs from a model.

Images

To extract images, use the get_image() method:

40 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

image = m.get_image()

Similarly to SEDs, a number of arguments can be passed to get_image(). For full details about the available
arguments, see the get_image() documentation. This method returns a single Image object that contains e.g.
the wavelengths (image.wav), frequencies (image.nu), values (i.e. fluxes, flux densities, or polarization values;
image.val), and optionally uncertainties (image.unc). See Image for the full list of the available attributes.

As for SEDs, the attributes of the image will depend on the options specified. The main difference compared to SEDs
is that there are two dimensions for the x and y position in the image instead of the aperture dimension.

See Plotting and writing images for an example of extracting images from a model.

3.4.2 Extracting physical quantities

As described in Radiative transfer settings, it is possible to specify which gridded physical quantities should be output
after the radiative transfer. For example, by default, the values of the specific energy absorbed in each cell are output,
and this can be used to determine the temperature in each cell.

To access these gridded physical quantities, first access the model output file with:

from hyperion.model import ModelOutput
m = ModelOutput(’output_file.rtout’)

then make use of the get_quantities method to extract a grid object:

grid = m.get_quantities()

By default, this will extract the physical quantities from the last iteration, but it is also possible to extract quantities
from previous iterations, e.g.:

grid = m.get_quantities(iteration=1)

The value of iteration should be zero-based, so 1 indicates the second iteration.

The grid variable now contains both the geometrical information about the grid, and the quantities output in the
iteration specified. How this information is accessed depends on the grid type, as described below.

Regular 3-d grids

For regular 3-d grids, the position of the center of the cells can be accessed with the x, y, and z attributes for cartesian
grids, the w, z, and p attributes for cylindrical polar grids, and the r, t, and p attributes for spherical polar grids.
These are 1-d arrays, but it is also possible to retrieve 3-d versions of these arrays by adding g in front, e.g. gx, gy,
and gz. It is also possible to retrieve the original wall positions by adding the _wall suffix to the 1-d array names,
e.g. x_wall, y_wall, and z_wall.

The physical quantities are stored in a dictionary called quantities, where each element in the dictionary is a
quantity, and each quantity is stored as a list with as many elements as dust types. Each element is a 3-d Numpy array.
Therefore, you can access for example the specific_energy values for the first dust type with:

values = g.quantities[’specific_energy’][0]

However, it is also possible to access this with a more convenient notation:

values = g[’specific_energy’][0].array

Although the temperature values are not ever directly present in the output file, if the specific energy values are
present, get_quantities will automatically calculate and make available the temperature quantity which can
be accessed as above with:

3.4. Post-processing models 41

Hyperion Manual, Release 0.9.2

values = g[’temperature’][0].array

In Visualizing physical quantities for regular 3-d grids, we show how to visualize this information.

AMR grids

When extracting an AMR grid using get_quantities(), an AMRGrid object is returned. This object contains
an attribute named levels that is a list of Level objects. Each Level object contains a grids attribute that is a
list of Grid objects, which in turn have attributes xmin, xmax, ymin, ymax, zmin, zmax, nx, ny, and nz which
give the boundaries and number of cells in each direction in the grid (this format is described in more detail in AMR
Grids).

Since this is not easy to visualize, Hyperion includes an interface to the yt package for AMR grids. If you extracted
the quantities with:

amr = m.get_quantities()

you can call the following method to output a StreamStaticOutput yt object that can be directly used for plotting
in yt:

pf = amr.to_yt()

where pf is a yt StaticOutput object. See Visualizing physical quantities from adaptive grids with yt for more
details and a plotting tutorial.

Octree grids

When extracting an Octree grid using get_quantities(), an OctreeGrid object is returned. The format of
this object is described in detail in Octree Grids.

As for AMR grids, Hyperion includes an interface to the yt package for Octree grids. If you extracted the quantities
with:

oct = m.get_quantities()

you can call the following method to output a StreamStaticOutput yt object that can be directly used for plotting
in yt:

pf = oct.to_yt()

where pf is a yt StaticOutput object. See Visualizing physical quantities from adaptive grids with yt for more
details and a plotting tutorial.

The Tutorials section contains a number of examples illustrating how to extract and visualize observables and quanti-
ties.

Note: A convenience script is provided to quickly extract image cubes and physical grids for inspection as FITS files:

Retrieve all images
hyperion2fits --images model.rtout

Retrieve all physical arrays (only works for regular grids)
hyperion2fits --physics model.rtout

Ds9 version 7 or later is required to be able to navigate FITS cubes with more than 3 dimensions. This is only meant
as a quick look tool. To extract properly scaled and sliced information from the output file, see the sections above.

42 Chapter 3. Documentation

http://yt-project.org/
http://yt-project.org/

Hyperion Manual, Release 0.9.2

3.5 Tutorials

3.5.1 Basic Python

If you are not comfortable with writing out files or making plots in Python, the following two sections will help you
get started:

Writing files in Python

Pure Python

The most basic way to write files in Python is to simply open a file with write access:

f = open(’file.txt’, ’wb’)

and to then call the write method to write to the file:

f.write("Hello World")

Line returns have to be explicitly included using \n:

f.write("Line 1\n")
f.write("line 2\n")

And files should be closed with:

f.close()

The best way to write out variables with this technique is to use string formatting which is described in more detail
here. The basic command to format variables into a string is:

format % variables

where format is a string containing the format statements and variables is a tuple of the values, for example:

>>> print "%s %5.2f %10.4e" % ("name", 3.4, 1.e-10)
name 3.40 1.0000e-10

We can use this when writing out files, so if we have two lists or arrays of values a and b we can do:

a = [1,2,3,4,5]
b = [2,6,4,3,2]

f = open(’file.txt’, ’wb’)
for i in range(len(a)):

f.write("%i %5.2f\n" % (a[i], b[i]))
f.close()

which will produce a file containing:

1 2.00
2 6.00
3 4.00
4 3.00
5 2.00

3.5. Tutorials 43

http://docs.python.org/library/stdtypes.html#string-formatting

Hyperion Manual, Release 0.9.2

Numpy

Numpy provides a function called savetxt that makes it easy to write out arrays to files. Given two lists or arrays a
and b as above, one can simply do:

import numpy as np
a = [1,2,3,4,5]
b = [2,6,4,3,2]
np.savetxt(’file_numpy.txt’, zip(a, b), fmt="%i %5.2f")

which produces exactly the same output as above and avoids the for loop.

An introduction to Matplotlib

Before we start plotting SEDs and images, let’s see how Matplotlib works. The first thing we want to do is to import
Matplotlib:

import matplotlib.pyplot as plt

In general, if you are plotting from a script as opposed to interactively, you probably don’t want each figure to pop up
to the screen before being written out to a file. In that case, use:

import matplotlib as mpl
mpl.use(’Agg’)
import matplotlib.pyplot as plt

This sets the default backend for plotting to Agg, which is a non-interactive backend.

We now want to create a figure, which we do using:

fig = plt.figure()

This creates a new figure, which we can now access via the fig variable (fig is just the variable name we chose, you
can use anything you want). The figure is just the container for anything you are going to plot, so we next need to add
a set of axes. The simplest way to do this is:

ax = fig.add_subplot(1,1,1)

The arguments for add_subplot are the number of subplots in the x and y direction, followed by the index of the
current one.

The most basic command you can now type is plot, which draws a line plot. The basic arguments are the x and y
coordinates of the vertices:

ax.plot([1,2,3,4],[2,3,2,1])

Now we can simply save the plot to a figure. A number of file types are supported, including PNG, JPG, EPS, and
PDF. Let’s write our masterpiece out to a PNG file:

fig.savefig(’line_plot.png’)

Note: If you are using a Mac, then writing out in PNG while you are working on the plot is a good idea, because if
you open it in Preview.app, it will update automatically whenever you run the script (you just need to click on the plot
window to make it update). When you are happy with your plot, you can always switch to EPS.

Our script now looks like:

44 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

import matplotlib as mpl
mpl.use(’Agg’)
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot([1,2,3,4],[2,3,2,1])
fig.savefig(’line_plot.png’)

3.5.2 Post-processing

Plotting and writing out SEDs

So you’ve run a model with SEDs, and you now want to plot them or write the out to files. The plotting library used
in this tutorial is Matplotlib but there is no reason why you can’t use another. The examples below get you to write
Python scripts, but you can also run these interactively in python or ipython if you like.

Example model

As an example, let’s set up a simple model of a star with a blackbody spectrum surrounded by a flared disk using the
AnalyticalYSOModel class.

import numpy as np

from hyperion.model import AnalyticalYSOModel
from hyperion.util.constants import rsun, au, msun, sigma

Initalize the model
m = AnalyticalYSOModel()

Set the stellar parameters
m.star.radius = 2. * rsun
m.star.temperature = 4000.
m.star.luminosity = 4 * (2. * rsun) ** 2 * sigma * 4000 ** 4

Add a flared disk
disk = m.add_flared_disk()
disk.mass = 0.01 * msun
disk.rmin = 10 * m.star.radius
disk.rmax = 200 * au
disk.r_0 = m.star.radius
disk.h_0 = 0.01 * disk.r_0
disk.p = -1.0
disk.beta = 1.25
disk.dust = ’kmh_lite.hdf5’

Use raytracing to improve s/n of thermal/source emission
m.set_raytracing(True)

Use the modified random walk
m.set_mrw(True, gamma=2.)

Set up grid
m.set_spherical_polar_grid_auto(399, 199, 1)

3.5. Tutorials 45

http://matplotlib.org

Hyperion Manual, Release 0.9.2

Set up SED for 10 viewing angles
sed = m.add_peeled_images(sed=True, image=False)
sed.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(45., 10))
sed.set_wavelength_range(150, 0.02, 2000.)
sed.set_track_origin(’basic’)

Set number of photons
m.set_n_photons(initial=1e5, imaging=1e6,

raytracing_sources=1e4, raytracing_dust=1e6)

Set number of temperature iterations
m.set_n_initial_iterations(5)

Write out file
m.write(’class2_sed.rtin’)
m.run(’class2_sed.rtout’, mpi=True)

Note that the subsequent plotting code applies to any model, not just AnalyticalYSOModel models.

Plotting SEDs

Note: If you have never used Matplotlib before, you can first take a look at the An introduction to Matplotlib tutorial.

Total flux Once the above model has run, we are ready to make a simple SED plot. The first step is to extract the
SED from the output file from the radiation transfer code. This step is described in detail in Post-processing models.
Combining this with what we learned above about making plots, we can write scripts that will fetch SEDs and plot
them. For example, if we want to plot an SED for the first inclination and the largest aperture, we can do:

import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Open the model
m = ModelOutput(’class2_sed.rtout’)

Create the plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

Extract the SED for the smallest inclination and largest aperture, and
scale to 300pc. In Python, negative indices can be used for lists and
arrays, and indicate the position from the end. So to get the SED in the
largest aperture, we set aperture=-1.
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc)

Plot the SED. The loglog command is similar to plot, but automatically
sets the x and y axes to be on a log scale.
ax.loglog(sed.wav, sed.val)

Add some axis labels (we are using LaTeX here)
ax.set_xlabel(r’λ [μm]’)
ax.set_ylabel(r’λF_λ [ergs/s/cm2]’)

46 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Set view limits
ax.set_xlim(0.1, 2000.)
ax.set_ylim(2.e-16, 2.e-9)

Write out the plot
fig.savefig(’class2_sed_plot_single.png’)

This script produces the following plot:

Now let’s say that we want to plot the SED for all inclinations. We can either call get_sed() and loglog once for
each inclination, or call it once with inclination=’all’ and then call only loglog once for each inclination:

import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

m = ModelOutput(’class2_sed.rtout’)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

Extract all SEDs
sed = m.get_sed(inclination=’all’, aperture=-1, distance=300 * pc)

Plot SED for each inclination
for i in range(sed.val.shape[0]):

ax.loglog(sed.wav, sed.val[i, :], color=’black’)

ax.set_xlabel(r’λ [μm]’)
ax.set_ylabel(r’λF_λ [ergs/s/cm2]’)
ax.set_xlim(0.1, 2000.)
ax.set_ylim(2.e-16, 2.e-9)
fig.savefig(’class2_sed_plot_incl.png’)

3.5. Tutorials 47

Hyperion Manual, Release 0.9.2

This script produces the following plot:

Individual SED components Now let’s do something a little more fancy. Assuming that you set up the SEDs with
photon tracking:

sed.set_track_origin(’basic’)

or:

sed.set_track_origin(’detailed’)

you can plot the individual components. Notice that we included the former in the model at the top of this page, so we
can make use of it here to plot separate components of the SED.

The following example retrieves each separate components, and plots it in a different color:

import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

m = ModelOutput(’class2_sed.rtout’)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

Total SED
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc)
ax.loglog(sed.wav, sed.val, color=’black’, lw=3, alpha=0.5)

Direct stellar photons
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc,

component=’source_emit’)
ax.loglog(sed.wav, sed.val, color=’blue’)

48 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Scattered stellar photons
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc,

component=’source_scat’)
ax.loglog(sed.wav, sed.val, color=’teal’)

Direct dust photons
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc,

component=’dust_emit’)
ax.loglog(sed.wav, sed.val, color=’red’)

Scattered dust photons
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc,

component=’dust_scat’)
ax.loglog(sed.wav, sed.val, color=’orange’)

ax.set_xlabel(r’λ [μm]’)
ax.set_ylabel(r’λF_λ [ergs/s/cm2]’)
ax.set_xlim(0.1, 2000.)
ax.set_ylim(2.e-16, 2.e-9)
fig.savefig(’class2_sed_plot_components.png’)

This script produces the following plot:

Writing out SEDs

Note: If you have never written text files from Python before, you can first take a look at the Writing files in Python
tutorial.

The output files from the radiative transfer code are in the HDF5 file format, and can therefore be accessed directly

3.5. Tutorials 49

Hyperion Manual, Release 0.9.2

from most programming/scripting languages. However, in many cases it might be most convenient to write a small
Python script to extract the required information and to write it out to files that can then be read in to other tools.

For instance, you may want to write out the SEDs to ASCII files. To do this, the first step, as for plotting (see Plotting
SEDs above) is to extract the SED from the output file from the radiation transfer code. This step is also described in
detail in Post-processing models. Once we have extracted an SED we can write a script that will write it out to disk.
For example, if we want to write out the SED for the first inclination and the largest aperture from the Example Model,
we can do:

import numpy as np

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

m = ModelOutput(’class2_sed.rtout’)
sed = m.get_sed(inclination=0, aperture=-1, distance=300 * pc)
np.savetxt(’sed.txt’, list(zip(sed.wav, sed.val)), fmt="%11.4e %11.4e")

This script produces a file that looks like:

1.9247e+03 3.2492e-16
1.7825e+03 4.6943e-16
1.6508e+03 6.7731e-16
1.5288e+03 9.7580e-16
1.4159e+03 1.4036e-15
1.3113e+03 2.0154e-15
1.2144e+03 2.8884e-15
1.1247e+03 4.1310e-15

...

Plotting and writing images

As mentioned in Plotting and writing out SEDs, the output files from the radiative transfer code are in the HDF5 file
format, and can therefore be accessed directly from most programming/scripting languages. However, in most cases
it is easiest to use the Hyperion Python library to extract the required information and write it out to files. In this
tutorial, we learn how to write out images to FITS files (for an example of writing out SEDs, see Plotting and writing
out SEDs).

Example model

In this example, we set up a simple model that consists of a cube of constant density, with a point source shining
isotropically. A denser cube then causes some of the emission to be blocked, and casts a shadow:

import numpy as np

from hyperion.model import Model
from hyperion.util.constants import pc, lsun

Initialize model
m = Model()

Set up 64x64x64 cartesian grid
w = np.linspace(-pc, pc, 64)
m.set_cartesian_grid(w, w, w)

Add density grid with constant density and add a higher density cube inside to

50 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

cause a shadow.
density = np.ones(m.grid.shape) * 1e-21
density[26:38, 26:38, 26:38] = 1.e-18
m.add_density_grid(density, ’kmh_lite.hdf5’)

Add a point source in the center
s = m.add_point_source()
s.position = (0.4 * pc, 0., 0.)
s.luminosity = 1000 * lsun
s.temperature = 6000.

Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(20, 1., 1000.)
image.set_viewing_angles([60.], [80.])
image.set_image_size(400, 400)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

Set runtime parameters
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=4e6, imaging=4e7,

raytracing_sources=1, raytracing_dust=1e7)

Write out input file
m.write(’simple_cube.rtin’)
m.run(’simple_cube.rtout’, mpi=True)

Plotting images

Note: If you have never used Matplotlib before, you can first take a look at the An introduction to Matplotlib tutorial.

The first step is to extract the image cube from the output file (simple_cube.rtout). This step is described in
detail in Post-processing models. We can make a plot of the surface brightness

import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Open the model
m = ModelOutput(’simple_cube.rtout’)

Extract the image for the first inclination, and scale to 300pc. We
have to specify group=1 as there is no image in group 0.
image = m.get_image(inclination=0, distance=300 * pc, units=’MJy/sr’)

Open figure and create axes
fig = plt.figure(figsize=(8, 8))

Pre-set maximum for colorscales
VMAX = {}
VMAX[1] = 10.
VMAX[30] = 100.

3.5. Tutorials 51

Hyperion Manual, Release 0.9.2

VMAX[100] = 2000.
VMAX[300] = 2000.

We will now show four sub-plots, each one for a different wavelength
for i, wav in enumerate([1, 30, 100, 300]):

ax = fig.add_subplot(2, 2, i + 1)

Find the closest wavelength
iwav = np.argmin(np.abs(wav - image.wav))

Calculate the image width in arcseconds given the distance used above
w = np.degrees((1.5 * pc) / image.distance) * 60.

This is the command to show the image. The parameters vmin and vmax are
the min and max levels for the colorscale (remove for default values).
ax.imshow(np.sqrt(image.val[:, :, iwav]), vmin=0, vmax=np.sqrt(VMAX[wav]),

cmap=plt.cm.gist_heat, origin=’lower’, extent=[-w, w, -w, w])

Finalize the plot
ax.tick_params(axis=’both’, which=’major’, labelsize=10)
ax.set_xlabel(’x (arcmin)’)
ax.set_xlabel(’y (arcmin)’)
ax.set_title(str(wav) + ’ microns’, y=0.88, x=0.5, color=’white’)

fig.savefig(’simple_cube_plot.png’, bbox_inches=’tight’)

This script produces the following plot:

52 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Writing out images

Writing out images to text files does not make much sense, so in this section we see how to write out images extracted
from the radiative transfer code results to a FITS file, and add WCS information. Once a 2D image or 3D wavelength
cube have been extracted as shown in Plotting images, we can write them out to a FITS file using Astropy:

from astropy.io import fits

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Retrieve image cube as before
m = ModelOutput(’simple_cube.rtout’)
image = m.get_image(inclination=0, distance=300 * pc, units=’MJy/sr’)

The image extracted above is a 3D array. We can write it out to FITS.
We need to swap some of the directions around so as to be able to use
the ds9 slider to change the wavelength of the image.
fits.writeto(’simple_cube.fits’, image.val.swapaxes(0, 2).swapaxes(1, 2),

clobber=True)

We can also just output one of the wavelengths
fits.writeto(’simple_cube_slice.fits’, image.val[:, :, 1], clobber=True)

3.5. Tutorials 53

http://www.astropy.org

Hyperion Manual, Release 0.9.2

Writing out images with WCS information

Adding World Coordinate System (WCS) information is easy using Astropy:

import numpy as np

from astropy.io import fits
from astropy.wcs import WCS

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Retrieve image cube as before
m = ModelOutput(’simple_cube.rtout’)
image = m.get_image(inclination=0, distance=300 * pc, units=’MJy/sr’)

Initialize WCS information
wcs = WCS(naxis=2)

Use the center of the image as projection center
wcs.wcs.crpix = [image.val.shape[1] / 2. + 0.5,

image.val.shape[0] / 2. + 0.5]

Set the coordinates of the image center
wcs.wcs.crval = [233.4452, 1.2233]

Set the pixel scale (in deg/pix)
scale = np.degrees(3. * pc / image.val.shape[0] / image.distance)
wcs.wcs.cdelt = [-scale, scale]

Set the coordinate system
wcs.wcs.ctype = [’GLON-CAR’, ’GLAT-CAR’]

And produce a FITS header
header = wcs.to_header()

We can also just output one of the wavelengths
fits.writeto(’simple_cube_slice_wcs.fits’, image.val[:, :, 1],

header=header, clobber=True)

Making 3-color images

Making 3-color images is possible using the Python Imaging Library. The following example demonstrates how to
produce a 3-color PNG of the above model using the scattered light wavelengths:

import numpy as np
from PIL import Image

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

m = ModelOutput(’simple_cube.rtout’)
image = m.get_image(inclination=0, distance=300 * pc, units=’MJy/sr’)

Extract the slices we want to use for red, green, and blue
r = image.val[:, :, 17]
g = image.val[:, :, 18]

54 Chapter 3. Documentation

http://www.astropy.org
http://www.pythonware.com/products/pil/

Hyperion Manual, Release 0.9.2

b = image.val[:, :, 19]

Now we need to rescale the values we want to the range 0 to 255, clip values
outside the range, and convert to unsigned 8-bit integers. We also use a sqrt
stretch (hence the ** 0.5)

r = np.clip((r / 0.5) ** 0.5 * 255., 0., 255.)
r = np.array(r, dtype=np.uint8)

g = np.clip((g / 2) ** 0.5 * 255., 0., 255.)
g = np.array(g, dtype=np.uint8)

b = np.clip((b / 4.) ** 0.5 * 255., 0., 255.)
b = np.array(b, dtype=np.uint8)

We now convert to image objects
image_r = Image.fromarray(r)
image_g = Image.fromarray(g)
image_b = Image.fromarray(b)

And finally merge into a single 3-color image
img = Image.merge("RGB", (image_r, image_g, image_b))

By default, the image will be flipped, so we need to fix this
img = img.transpose(Image.FLIP_TOP_BOTTOM)

img.save(’simple_cube_rgb.png’)

which gives:

3.5. Tutorials 55

Hyperion Manual, Release 0.9.2

Alternatively, you can write out the required images to FITS format, then use the make_rgb_image function in APLpy
to make the 3-color images.

Making animations

In this tutorial, we will find out how to make animations from Hyperion output.

Example model

To start with we will use a model very similar to Plotting and writing images but this time we only compute the image
in one wavelength bin, but for a number of different viewing angles:

import numpy as np

from hyperion.model import Model
from hyperion.util.constants import pc, lsun

Initialize model
m = Model()

56 Chapter 3. Documentation

http://aplpy.readthedocs.org/en/v0.9.9/howto_rgb.html

Hyperion Manual, Release 0.9.2

Set up 64x64x64 cartesian grid
w = np.linspace(-pc, pc, 64)
m.set_cartesian_grid(w, w, w)

Add density grid with constant density and add a higher density cube inside to
cause a shadow.
density = np.ones(m.grid.shape) * 1e-21
density[26:38, 26:38, 26:38] = 1.e-18
m.add_density_grid(density, ’kmh_lite.hdf5’)

Add a point source in the center
s = m.add_point_source()
s.position = (0.4 * pc, 0., 0.)
s.luminosity = 1000 * lsun
s.temperature = 6000.

Add multi-wavelength image for a single viewing angle
image = m.add_peeled_images(sed=False, image=True)
image.set_wavelength_range(1, 190., 210.)
image.set_viewing_angles(np.repeat(45., 36), np.linspace(5., 355., 36))
image.set_image_size(400, 400)
image.set_image_limits(-1.5 * pc, 1.5 * pc, -1.5 * pc, 1.5 * pc)

Set runtime parameters. We turn off scattering for the imaging since it is not
important at these wavelengths.
m.set_n_initial_iterations(5)
m.set_raytracing(True)
m.set_n_photons(initial=4e6, imaging=0,

raytracing_sources=1, raytracing_dust=1e7)

Write out input file
m.write(’flyaround_cube.rtin’)
m.run(’flyaround_cube.rtout’, mpi=True)

Making a fly-around movie

The following script describes how to generate PNG frames for an animation:

import os

import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Create output directory if it does not already exist
if not os.path.exists(’frames’):

os.mkdir(’frames’)

Open model
m = ModelOutput(’flyaround_cube.rtout’)

Read image from model
image = m.get_image(distance=300 * pc, units=’MJy/sr’)

3.5. Tutorials 57

Hyperion Manual, Release 0.9.2

image.val is now an array with four dimensions (n_view, n_y, n_x, n_wav)

for iview in range(image.val.shape[0]):

Open figure and create axes
fig = plt.figure(figsize=(3, 3))
ax = fig.add_subplot(1, 1, 1)

This is the command to show the image. The parameters vmin and vmax are
the min and max levels for the grayscale (remove for default values).
The colormap is set here to be a heat map. Other possible heat maps
include plt.cm.gray (grayscale), plt.cm.gist_yarg (inverted grayscale),
plt.cm.jet (default, colorful). The np.sqrt() is used to plot the
images on a sqrt stretch.
ax.imshow(np.sqrt(image.val[iview, :, :, 0]), vmin=0, vmax=np.sqrt(2000.),

cmap=plt.cm.gist_heat, origin=’lower’)

Save figure. The facecolor=’black’ and edgecolor=’black’ are for
esthetics, and hide the axes
fig.savefig(’frames/frame_%05i.png’ % iview,

facecolor=’black’, edgecolor=’black’)

Close figure
plt.close(fig)

The frames can then be combined into a GIF animation using ImageMagick:

$ convert -delay 10 -adjoin frames/*.png movie.gif

The delay value is the delay between frames in 1/100ths of a second. The result is the following:

Visualizing physical quantities for regular 3-d grids

As described in Extracting physical quantities, it is easy to extract quantities such as density, specific_energy, and
temperature from the output model files. In this tutorial, we see how to visualize this information efficiently.

Cartesian grid example

We first set up a model of a box containing 100 sources heating up dust:

import random
random.seed(’hyperion’) # ensure that random numbers are the same every time

import numpy as np
from hyperion.model import Model
from hyperion.util.constants import pc, lsun

Define cell walls
x = np.linspace(-10., 10., 101) * pc
y = np.linspace(-10., 10., 101) * pc
z = np.linspace(-10., 10., 101) * pc

Initialize model and set up density grid
m = Model()
m.set_cartesian_grid(x, y, z)

58 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

m.add_density_grid(np.ones((100, 100, 100)) * 1.e-20, ’kmh_lite.hdf5’)

Generate random sources
for i in range(100):

s = m.add_point_source()
xs = random.uniform(-10., 10.) * pc
ys = random.uniform(-10., 10.) * pc
zs = random.uniform(-10., 10.) * pc
s.position = (xs, ys, zs)
s.luminosity = 10. ** random.uniform(0., 3.) * lsun
s.temperature = random.uniform(3000., 8000.)

Specify that the specific energy and density are needed
m.conf.output.output_specific_energy = ’last’
m.conf.output.output_density = ’last’

Set the number of photons
m.set_n_photons(initial=10000000, imaging=0)

Write output and run model
m.write(’quantity_cartesian.rtin’)
m.run(’quantity_cartesian.rtout’, mpi=True)

We can then use the get_quantities method described above to produce a density-weighted temperature map
collapsed in the z direction:

import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

Read in the model
m = ModelOutput(’quantity_cartesian.rtout’)

Extract the quantities
g = m.get_quantities()

Get the wall positions in pc
xw, yw = g.x_wall / pc, g.y_wall / pc

Make a 2-d grid of the wall positions (used by pcoloarmesh)
X, Y = np.meshgrid(xw, yw)

Calculate the density-weighted temperature
weighted_temperature = (np.sum(g[’temperature’][0].array

* g[’density’][0].array, axis=2)
/ np.sum(g[’density’][0].array, axis=2))

Make the plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
c = ax.pcolormesh(X, Y, weighted_temperature)
ax.set_xlim(xw[0], xw[-1])
ax.set_xlim(yw[0], yw[-1])
ax.set_xlabel(’x (pc)’)
ax.set_ylabel(’y (pc)’)
cb = fig.colorbar(c)

3.5. Tutorials 59

Hyperion Manual, Release 0.9.2

cb.set_label(’Temperature (K)’)
fig.savefig(’weighted_temperature_cartesian.png’, bbox_inches=’tight’)

Of course, we can also plot individual slices:

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
c = ax.pcolormesh(X, Y, g[’temperature’][0].array[:, 49, :])
ax.set_xlim(xw[0], xw[-1])
ax.set_xlim(yw[0], yw[-1])
ax.set_xlabel(’x (pc)’)
ax.set_ylabel(’y (pc)’)
cb = fig.colorbar(c)
cb.set_label(’Temperature (K)’)
fig.savefig(’sliced_temperature_cartesian.png’, bbox_inches=’tight’)

60 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Spherical polar grid example

Polar grids are another interest case, because one might want to plot the result in polar or cartesian coordinates. To
demonstrate this, we set up a simple example with a star surrounded by a flared disk:

from hyperion.model import AnalyticalYSOModel
from hyperion.util.constants import lsun, rsun, tsun, msun, au

Initialize model and set up density grid
m = AnalyticalYSOModel()

Set up the central source
m.star.radius = rsun
m.star.temperature = tsun
m.star.luminosity = lsun

Set up a simple flared disk
d = m.add_flared_disk()
d.mass = 0.001 * msun
d.rmin = 0.1 * au
d.rmax = 100. * au
d.p = -1
d.beta = 1.25

3.5. Tutorials 61

Hyperion Manual, Release 0.9.2

d.h_0 = 0.01 * au
d.r_0 = au
d.dust = ’kmh_lite.hdf5’

Specify that the specific energy and density are needed
m.conf.output.output_specific_energy = ’last’
m.conf.output.output_density = ’last’

Set the number of photons
m.set_n_photons(initial=1000000, imaging=0)

Set up the grid
m.set_spherical_polar_grid_auto(400, 300, 1)

Use MRW and PDA
m.set_mrw(True)
m.set_pda(True)

Write output and run model
m.write(’quantity_spherical.rtin’)
m.run(’quantity_spherical.rtout’, mpi=True)

Making a plot of temperature in (r, theta) space is similar to before:

import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import au

Read in the model
m = ModelOutput(’quantity_spherical.rtout’)

Extract the quantities
g = m.get_quantities()

Get the wall positions for r and theta
rw, tw = g.r_wall / au, g.t_wall

Make a 2-d grid of the wall positions (used by pcolormesh)
R, T = np.meshgrid(rw, tw)

Make a plot in (r, theta) space
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
c = ax.pcolormesh(R, T, g[’temperature’][0].array[0, :, :])
ax.set_xscale(’log’)
ax.set_xlim(rw[1], rw[-1])
ax.set_ylim(tw[0], tw[-1])
ax.set_xlabel(’r (au)’)
ax.set_ylabel(r’θ’)
ax.set_yticks([np.pi, np.pi * 0.75, np.pi * 0.5, np.pi * 0.25, 0.])
ax.set_yticklabels([r’π’, r’$3\pi/4$’, r’$\pi/2$’, r’$\pi/4$’, r’0’])
cb = fig.colorbar(c)
cb.set_label(’Temperature (K)’)
fig.savefig(’temperature_spherical_rt.png’, bbox_inches=’tight’)

62 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Making a plot in spherical coordinates instead is in fact also straightforward:

Calculate the position of the cell walls in cartesian coordinates
R, T = np.meshgrid(rw, tw)
X, Z = R * np.sin(T), R * np.cos(T)

Make a plot in (x, z) space for different zooms
fig = plt.figure(figsize=(16, 8))

ax = fig.add_axes([0.1, 0.1, 0.2, 0.8])
c = ax.pcolormesh(X, Z, g[’temperature’][0].array[0, :, :])
ax.set_xlim(X.min(), X.max())
ax.set_ylim(Z.min(), Z.max())
ax.set_xlabel(’x (au)’)
ax.set_ylabel(’z (au)’)

ax = fig.add_axes([0.32, 0.1, 0.2, 0.8])
c = ax.pcolormesh(X, Z, g[’temperature’][0].array[0, :, :])
ax.set_xlim(X.min() / 10., X.max() / 10.)
ax.set_ylim(Z.min() / 10., Z.max() / 10.)
ax.set_xlabel(’x (au)’)
ax.set_yticklabels(’’)
ax.text(0.1, 0.95, ’Zoom 10x’, ha=’left’, va=’center’,

transform=ax.transAxes, color=’white’)

3.5. Tutorials 63

Hyperion Manual, Release 0.9.2

ax = fig.add_axes([0.54, 0.1, 0.2, 0.8])
c = ax.pcolormesh(X, Z, g[’temperature’][0].array[0, :, :])
ax.set_xlim(X.min() / 100., X.max() / 100)
ax.set_ylim(Z.min() / 100, Z.max() / 100)
ax.set_xlabel(’x (au)’)
ax.set_yticklabels(’’)
ax.text(0.1, 0.95, ’Zoom 100x’, ha=’left’, va=’center’,

transform=ax.transAxes, color=’white’)

ax = fig.add_axes([0.75, 0.1, 0.03, 0.8])
cb = fig.colorbar(c, cax=ax)
cb.set_label(’Temperature (K)’)

fig.savefig(’temperature_spherical_xz.png’, bbox_inches=’tight’)

Visualizing physical quantities from adaptive grids with yt

As described in Extracting physical quantities, it is easy to extract quantities such as density, specific_energy, and
temperature from the output model files. In this tutorial, we see how to visualize this information efficiently for AMR
and Octree grids.

Fortunately, we can just make use of the excellent yt package that has been developed for that purpose! Hyperion
includes convenience methods to convert grid objects to objects that you can use in yt.

If you extract quantities from an output file with:

grid = m.get_quantities()

then grid will be an AMRGrid or OctreeGrid grid object. This object contains all the information about the grid
geometry, as well as the physical quantities such as density, temperature, and specific energy (depending on how you
configured the model). You can then simply do:

64 Chapter 3. Documentation

http://yt-project.org/

Hyperion Manual, Release 0.9.2

pf = grid.to_yt()

where pf is a StaticOutput yt object! This can then be used as a normal dataset in yt. For example, we can easily
make projections of density and temperature along the y-axis:

from yt.mods import ProjectionPlot

prj = ProjectionPlot(pf, ’y’, [’density’, ’temperature’],
center=[0.0, 0.0, 0.0])

prj.set_cmap(’temperature’, ’gist_heat’)
prj.set_cmap(’density’, ’gist_heat’)
prj.set_log(’density’, True)
prj.save()

The to_yt method is also available for regular cartesian grids, but not for the spherical or cylindrical polar grids.

Note: At the moment, the method used to plot Octrees is very inefficient, so plotting these will be very slow.

Projection plots are just a very small fraction of the functionality of yt - you should have a careful look at their
documentation to find out about all the available functionality!

If we apply this to the output for the radiative transfer model on the hydrodynamical simulation in Robitaille (2011),
the density looks like:

3.5. Tutorials 65

http://yt-project.org/doc/index.html
http://dx.doi.org/10.1051/0004-6361/201117150

Hyperion Manual, Release 0.9.2

and the temperature looks like:

3.5.3 Example models

Typical Analytical YSO Model

The following example model sets up the Class I model from Whitney et al (2003) For now, this model does
not include the accretion luminosity, but this will be added in the future. First, we set up the model using the
AnalyticalYSOModel class:

import numpy as np

from hyperion.model import AnalyticalYSOModel
from hyperion.util.constants import rsun, lsun, au, msun, yr, c

Initalize the model
m = AnalyticalYSOModel()

Read in stellar spectrum
wav, fnu = np.loadtxt(’kt04000g+3.5z-2.0.ascii’, unpack=True)
nu = c / (wav * 1.e-4)

66 Chapter 3. Documentation

http://adsabs.harvard.edu/abs/2003ApJ...598.1079W

Hyperion Manual, Release 0.9.2

Set the stellar parameters
m.star.radius = 2.09 * rsun
m.star.spectrum = (nu, fnu)
m.star.luminosity = lsun
m.star.mass = 0.5 * msun

Add a flared disk
disk = m.add_flared_disk()
disk.mass = 0.01 * msun
disk.rmin = 7 * m.star.radius
disk.rmax = 200 * au
disk.r_0 = m.star.radius
disk.h_0 = 0.01 * disk.r_0
disk.p = -1.0
disk.beta = 1.25
disk.dust = ’kmh_lite.hdf5’

Add an Ulrich envelope
envelope = m.add_ulrich_envelope()
envelope.rc = disk.rmax
envelope.mdot = 5.e-6 * msun / yr
envelope.rmin = 7 * m.star.radius
envelope.rmax = 5000 * au
envelope.dust = ’kmh_lite.hdf5’

Add a bipolar cavity
cavity = envelope.add_bipolar_cavity()
cavity.power = 1.5
cavity.theta_0 = 20
cavity.r_0 = envelope.rmax
cavity.rho_0 = 5e4 * 3.32e-24
cavity.rho_exp = 0.
cavity.dust = ’kmh_lite.hdf5’

Use raytracing to improve s/n of thermal/source emission
m.set_raytracing(True)

Use the modified random walk
m.set_mrw(True, gamma=2.)

Set up grid
m.set_spherical_polar_grid_auto(399, 199, 1)

Set up SED
sed = m.add_peeled_images(sed=True, image=False)
sed.set_viewing_angles(np.linspace(0., 90., 10), np.repeat(45., 10))
sed.set_wavelength_range(150, 0.02, 2000.)

Set number of photons
m.set_n_photons(initial=1e6, imaging=1e6,

raytracing_sources=1e4, raytracing_dust=1e6)

Set number of temperature iterations and convergence criterion
m.set_n_initial_iterations(10)
m.set_convergence(True, percentile=99.0, absolute=2.0, relative=1.1)

Write out file
m.write(’class1_example.rtin’)

3.5. Tutorials 67

Hyperion Manual, Release 0.9.2

m.run(’class1_example.rtout’, mpi=True)

The model takes a few minutes to run on 12 processes (a little less than an hour in serial mode). We can then proceed
for example to plotting the SED:

import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

mo = ModelOutput(’class1_example.rtout’)
sed = mo.get_sed(aperture=-1, distance=140. * pc)

fig = plt.figure(figsize=(5, 4))
ax = fig.add_subplot(1, 1, 1)
ax.loglog(sed.wav, sed.val.transpose(), color=’black’)
ax.set_xlim(0.03, 2000.)
ax.set_ylim(2.e-15, 1e-8)
ax.set_xlabel(r’λ [μm]’)
ax.set_ylabel(r’λF_λ [ergs/cm$^2/s$]’)
fig.savefig(’class1_example_sed.png’, bbox_inches=’tight’)

which gives:

which is almost identical to the bottom left panel of Figure 3a of Whitney et al (2003) (the differences being due to
slightly different dust properties).

3.5.4 Advanced

How to efficiently compute pure scattering models

In some cases, for example if the wavelength is short enough, it is possible to ignore dust emission when computing
images. In such cases, we can make Hyperion run faster by disabling the temperature calculation as described in
Scattered-light images, and also by producing images only at select wavelengths using Monochromatic radiative
transfer. The following model demonstrates how to make an image of the central region of a flared disk in order
to image the inner rim:

68 Chapter 3. Documentation

http://adsabs.harvard.edu/abs/2003ApJ...598.1079W

Hyperion Manual, Release 0.9.2

from hyperion.model import AnalyticalYSOModel
from hyperion.util.constants import au, lsun, rsun, tsun, msun

Initialize model
m = AnalyticalYSOModel()

Set up star
m.star.radius = 1.5 * rsun
m.star.temperature = tsun
m.star.luminosity = lsun

Set up disk
d = m.add_flared_disk()
d.rmin = 10 * rsun
d.rmax = 30. * au
d.mass = 0.01 * msun
d.p = -1
d.beta = 1.25
d.r_0 = 10. * au
d.h_0 = 0.4 * au
d.dust = ’kmh_lite.hdf5’

Set up grid
m.set_spherical_polar_grid_auto(400, 100, 1)

Don’t compute temperatures
m.set_n_initial_iterations(0)

Don’t re-emit photons
m.set_kill_on_absorb(True)

Use raytracing (only important for source here, since no dust emission)
m.set_raytracing(True)

Compute images using monochromatic radiative transfer
m.set_monochromatic(True, wavelengths=[1.])

Set up image
i = m.add_peeled_images()
i.set_image_limits(-13 * rsun, 13 * rsun, -13. * rsun, 13 * rsun)
i.set_image_size(256, 256)
i.set_viewing_angles([60.], [20.])
i.set_wavelength_range(1, 1, 1)

Set number of photons
m.set_n_photons(imaging_sources=10000000, imaging_dust=0,

raytracing_sources=100000, raytracing_dust=0)

Write out the model and run it in parallel
m.write(’pure_scattering.rtin’)
m.run(’pure_scattering.rtout’, mpi=True)

Once this model has run, we can make a plot of the image (including a linear polarization map):

import matplotlib.pyplot as plt
from hyperion.model import ModelOutput
from hyperion.util.constants import pc

3.5. Tutorials 69

Hyperion Manual, Release 0.9.2

mo = ModelOutput(’pure_scattering.rtout’)

image_fnu = mo.get_image(inclination=0, units=’MJy/sr’, distance=300. * pc)
image_pol = mo.get_image(inclination=0, stokes=’linpol’)

fig = plt.figure(figsize=(8, 8))

Make total intensity sub-plot

ax = fig.add_axes([0.1, 0.3, 0.4, 0.4])
ax.imshow(image_fnu.val[:, :, 0], extent=[-13, 13, -13, 13],

interpolation=’none’, cmap=plt.cm.gist_heat,
origin=’lower’, vmin=0., vmax=4e9)

ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
ax.set_xlabel("x (solar radii)")
ax.set_ylabel("y (solar radii)")
ax.set_title("Surface brightness")

Make linear polarization sub-plot

ax = fig.add_axes([0.51, 0.3, 0.4, 0.4])
im = ax.imshow(image_pol.val[:, :, 0] * 100., extent=[-13, 13, -13, 13],

interpolation=’none’, cmap=plt.cm.gist_heat,
origin=’lower’, vmin=0., vmax=100.)

ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
ax.set_xlabel("x (solar radii)")
ax.set_title("Linear Polarization")
ax.set_yticklabels(’’)

axcb = fig.add_axes([0.92, 0.3, 0.02, 0.4])
plt.colorbar(im, label="%", cax=axcb)
fig.savefig(’pure_scattering_inner_disk.png’, bbox_inches=’tight’)

which gives:

70 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

This model takes under 4 minutes to run on 8 cores, which is less than would normally be required to produce an
image with this signal-to-noise in scattered light.

How to set the luminosity for an external radiation field

Two source types, ExternalSphericalSource and ExternalBoxSource are available, and can be used to
simulate an external radiation field (such as the interstellar radiation field or I). One of the tricky parameters to set is
the luminosity, because one often knows what the mean intensity of the interstellar radiation field should be, but not
the total luminosity emitted from a spherical or box surface.

From empirical tests, we find that if one wants a particular value of J (the mean intensity integrated over frequency),
then the luminosity should be set to AπJ where A is the area of the external source. We can check this using, as an
example, the ISRF model from Mathis, Mezger, and Panagia (hereafter MMP; 1983), who find

4πJ = 0.0217 erg cm−2 s−1

in the solar neighborhood.

We now set up a model with a spherical grid extending to 1pc in radius, with the spectrum given by MMP83:

import numpy as np

from hyperion.model import Model
from hyperion.util.constants import pc, c

The following value is taken from Mathis, Mezger, and Panagia (1983)
FOUR_PI_JNU = 0.0217

Initialize model
m = Model()

Set up grid
m.set_spherical_polar_grid([0., 1.001 * pc],

[0., np.pi],
[0., 2. * np.pi])

Read in MMP83 spectrum
wav, jlambda = np.loadtxt(’mmp83.txt’, unpack=True)
nu = c / (wav * 1.e-4)
jnu = jlambda * wav / nu

Set up the source - note that the normalization of the spectrum is not
important - the luminosity is set separately.
s = m.add_external_spherical_source()
s.radius = pc
s.spectrum = (nu, jnu)
s.luminosity = np.pi * pc * pc * FOUR_PI_JNU

Add an inside observer with an all-sky camera
sed = m.add_peeled_images(sed=False, image=True)
sed.set_inside_observer((0., 0., 0.))
sed.set_image_limits(180., -180., -90., 90.)
sed.set_image_size(256, 128)
sed.set_wavelength_range(100, 0.01, 1000.)

Use raytracing for high signal-to-noise
m.set_raytracing(True)

3.5. Tutorials 71

http://adsabs.harvard.edu/abs/1983A%26A...128..212M

Hyperion Manual, Release 0.9.2

Don’t compute the temperature
m.set_n_initial_iterations(0)

Only include photons from the source (since there is no dust)
m.set_n_photons(imaging=0,

raytracing_sources=10000000,
raytracing_dust=0)

Write out and run the model
m.write(’example_isrf.rtin’)
m.run(’example_isrf.rtout’)

To run this model, you will need the mmp83.txt file which contains the spectrum of the interstellar radiation field.
We have set up an observer inside the grid to make an all-sky integrated intensity map:

import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.integrate import integrate_loglog

Use LaTeX for plots
plt.rc(’text’, usetex=True)

Open the output file
m = ModelOutput(’example_isrf.rtout’)

Get an all-sky flux map
image = m.get_image(units=’ergs/cm^2/s/Hz’, inclination=0)

Compute the frequency-integrated flux
fint = np.zeros(image.val.shape[:-1])
for (j, i) in np.ndindex(fint.shape):

fint[j, i] = integrate_loglog(image.nu, image.val[j, i, :])

Find the area of each pixel
l = np.radians(np.linspace(180., -180., fint.shape[1] + 1))
b = np.radians(np.linspace(-90., 90., fint.shape[0] + 1))
dl = l[1:] - l[:-1]
db = np.sin(b[1:]) - np.sin(b[:-1])
DL, DB = np.meshgrid(dl, db)
area = np.abs(DL * DB)

Compute the intensity
intensity = fint / area

Intitialize plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection=’aitoff’)

Show intensity
image = ax.pcolormesh(l, b, intensity, cmap=plt.cm.gist_heat, vmin=0.0, vmax=0.0025)

Add mean intensity
four_pi_jnu = round(np.sum(intensity * area), 4)
fig.text(0.40, 0.15, r"$4\pi J = %6.4f$ "

r"${\rm erg\,cm^{-2}\,s^{-1}}$" % four_pi_jnu, size=14)

72 Chapter 3. Documentation

Hyperion Manual, Release 0.9.2

Add a colorbar
cax = fig.add_axes([0.92, 0.25, 0.02, 0.5])
fig.colorbar(image, cax=cax)

Add title and improve esthetics
ax.set_title(r"Integrated intensity in a given pixel "

r"(${\rm erg\,cm^{-2}\,s^{-1}\,ster^{-1}}$)", size=12, y=1.1)
ax.grid()
ax.tick_params(axis=’both’, which=’major’, labelsize=10)
cax.tick_params(axis=’both’, which=’major’, labelsize=10)

Save the plot
fig.savefig(’isrf_intensity.png’, bbox_inches=’tight’)

which gives:

As we can see, the value for 4πJ is almost identical to the value we initially used above.

3.6 Library of dust models

While you are encouraged to prepare your own dust properties file based on the most appropriate dust model for your
problem (see Preparing dust properties), we provide a library of dust models that you can select from. Since dust files
tend to be large, the final files are not directly made available - instead, you should download this file, then expand it,
and run the setup.py script as shown to produce the final dust files:

tar xvzf hyperion-dust-0.1.0.tar.gz
cd hyperion-dust-0.1.0
python setup.py build_dust

The dust files will be generated in the dust_files directory. If Hyperion is updated, it may be necessary to re-run
this script to update the dust files to the latest format. If this is necessary, then this will be made clear in the release

3.6. Library of dust models 73

http://pypi.python.org/packages/source/h/hyperion-dust/hyperion-dust-0.1.0.tar.gz

Hyperion Manual, Release 0.9.2

announcement for Hyperion.

Disclaimer

The choice of which dust model to use is entirely yours, and you should make sure that the dust model that
you pick is appropriate for the scientific problem you are trying to solve. In addition, as for the radiative
transfer code itself, we cannot guarantee that the dust files are bug-free - you should sign up to the mailing
list to ensure that you are informed as soon as bugs are identified and fixed.

The available dust files at this time are:

3.6.1 Kim, Martin, and Hendry (1994) dust with Henyey-Greenstein scattering

These are dust properties from Kim, Martin, and Hendry (1994), also known as KMH. The dust consists of astronom-
ical silicates, graphite, and carbon and the size distribution was determined using a maximum entropy method. This
dust type is meant to be applicable to the diffuse ISM (for low column densities) in the Galaxy.

Note: The dust properties given here are given per unit mass of gas+dust, assuming a gas-to-dust ratio of 141.84.
This means that when using Hyperion, the total gas+dust densities should be specified.

This version of the dust file is take directly from HOCHUNK, the radiative transfer code developed by B. Whitney et
al. This is the dust you should use if you want to reproduce results from that code, and it approximates the scattering
with a Henyey-Greenstein function. However, if you are interested in the best version of the KMH dust, with full
scattering properties, you can find this under Kim, Martin, and Hendry (1994) dust with full scattering properties.

The dust file is available in the hyperion-dust directory as dust_files/kmh94_3.1_hg.hdf5 (once you
have run python setup.py build_dust).

Rv=3.1 (dust_files/kmh94_3.1_hg.hdf5)

The following plot gives an overview of the dust properties (as described in Preparing dust properties):

3.6.2 Kim, Martin, and Hendry (1994) dust with full scattering properties

These are dust properties from Kim, Martin, and Hendry (1994), also known as KMH. The dust consists of astronom-
ical silicates, graphite, and carbon and the size distribution was determined using a maximum entropy method. This
dust type is meant to be applicable to the diffuse ISM (for low column densities) in the Galaxy.

Note: The dust properties given here are given per unit mass of gas+dust, assuming a gas-to-dust ratio of 141.84.
This means that when using Hyperion, the total densities should be specified.

This version of the dust file was re-computed using the code described in Computing dust properties, and includes the
full numerical scattering matrix. This is different from the version used in HOCHUNK, the radiative transfer code
developed by B. Whitney et al., since that dust approximated the scattering with a Henyey-Greenstein function. If you
are interested in using that dust instead, see Kim, Martin, and Hendry (1994) dust with Henyey-Greenstein scattering.

The dust file is available in the hyperion-dust directory as dust_files/kmh94_3.1_full.hdf5 (once
you have run python setup.py build_dust).

74 Chapter 3. Documentation

https://groups.google.com/forum/?fromgroups#!forum/hyperion-announce
https://groups.google.com/forum/?fromgroups#!forum/hyperion-announce
http://dx.doi.org/10.1086/173714
http://gemelli.colorado.edu/~bwhitney/codes/codes.html
http://dx.doi.org/10.1086/173714
http://gemelli.colorado.edu/~bwhitney/codes/codes.html

Hyperion Manual, Release 0.9.2

Rv=3.1 (dust_files/kmh94_3.1_full.hdf5)

The following plot gives an overview of the dust properties (as described in Preparing dust properties):

3.6.3 Draine et al. (2003) Milky-Way dust

These dust properties are for the carbonaceous-silicate grain model developed by Bruce Draine and collaborators. The
three dust models are those for the Milky Way size distribution for Rv=3.1, 4.0, and 5.5, and the abundances and grain
size distribution are taken from Weingartner and Draine (2001).

Note: The dust properties given here are given per unit mass of dust, and do not include the gas mass. This means
that when using Hyperion, the dust densities should be specified, not the total densities.

The Rv=3.1, 4.0, and 5.5 models are those with b_c=60ppm, 40ppm, and 30ppm respectively. The renormalization of
the dust-to-gas ratio mentioned in Draine (2003) is not important here, since we give the dust properties per unit dust
mass.

The dust properties presented here were recomputed with the code described in Computing dust properties, and may
differ slightly from those given by Bruce Draine (we had to recompute them in order to obtain the full scattering
properties which were otherwise not available).

The dust files are available in the hyperion-dust directory as dust_files/d03_3.1_6.0_A.hdf5,
dust_files/d03_4.0_4.0_A.hdf5, and dust_files/d03_5.5_3.0_A.hdf5 (once you have run
python setup.py build_dust), where the first number indicates the Rv, and the second indicates b_c.

Milky-Way dust, Rv=3.1, b_c=6.0 (dust_files/d03_3.1_6.0_A.hdf5)

The following plot gives an overview of the dust properties (as described in Preparing dust properties):

Milky-Way dust, Rv=4.0, b_c=4.0 (dust_files/d03_4.0_4.0_A.hdf5)

The following plot gives an overview of the dust properties (as described in Preparing dust properties):

Milky-Way dust, Rv=5.5, b_c=3.0 (dust_files/d03_5.5_3.0_A.hdf5)

The following plot gives an overview of the dust properties (as described in Preparing dust properties):

If you develop dust models and would like your dust models to feature as one of the available ones on this page, please
let us know!

For advanced users, we provide code and documentation to compute your own dust models:

3.6. Library of dust models 75

http://www.astro.princeton.edu/~draine/dust/dustmix.html
http://adsabs.harvard.edu/abs/2001ApJ...548..296W
http://adsabs.harvard.edu/abs/2003ARA%26A..41..241D
http://www.astro.princeton.edu/~draine/dust/dustmix.html

Hyperion Manual, Release 0.9.2

3.6.4 Computing dust properties

A standard algorithm used to compute scattering and absorption properties by spherical dust particles is that provided
by Bohren and Huffman (1983) (also known as bhmie). As part of the Hyperion development, we have written a
wrapper around the improved version of bhmie.f developed by Bruce Draine that makes it easy to compute the dust
properties for mixes of dust compositions and grain sizes. The program can be found here along with instructions for
installation and usage.

Note that this code is only able to compute properties for simple spherical grains with no mantles.

Disclaimer

We cannot guarantee that the wrapper (or the original bhmie code) are bug-free - you should sign up to
the mailing list to ensure that you are informed as soon as bugs are identified and fixed.

In order to be able to easily read computed properties into Hyperion, the easiest way is to set the format parameter
to 2. Then, if the prefix and format are set to e.g.:

’my_dust’ = prefix for results
2 = output format (see README)

You can create a Hyperion dust object with:

from hyperion.dust import BHDust
d = BHDust(’my_dust’)

and as described in Preparing dust properties, you can visualize and write out the dust object with:

d.plot(’my_dust.png’)
d.write(’my_dust.hdf5’)

Please let us know if you run into any issues!

76 Chapter 3. Documentation

http://adsabs.harvard.edu/abs/1983asls.book.....B
http://www.astro.princeton.edu/~draine/scattering.html
https://github.com/hyperion-rt/bhmie
https://groups.google.com/forum/?fromgroups#!forum/hyperion-announce
http://www.github.com/hyperion-rt/hyperion/issues

CHAPTER

FOUR

ADVANCED

4.1 Advanced topics

This part of the documentation discusses topics that are more advanced, and offer more control over the input, running,
and output of the radiative transfer.

4.1.1 Re-using previous models

In some cases, it can be useful to re-use the geometry, physical quantities, sources, or other parameters, from a previous
model. For example, one might want to separate the calculation of the temperature/specific energy from the calculation
of the images. A number of methods are available for this, and are described in the sections below.

Re-using a whole model

The simplest case is that you may want to read in a previous model, modify it, and write it out/run it again. The easiest
way to do this is to use the read() method:

m = Model.read(’some_model.rtin’)

Once the model has been read in, it is possible to modify any of the parameters, add more density grids, sources, and
change the parameters.

It is also possible to read in a model from an output file. In this case, what is read in are the initial parame-
ters/settings/quantities for the model. If you would like to use the final specific energy (and optionally density if
available), you can call read with the only_initial= argument set to False:

m = Model.read(‘some_model.rtout’, only_initial=False)

If, instead of reading in the whole model, you want to re-use only certain aspects of a previous model, see the following
sections.

Geometry

It is possible to re-use the geometry (i.e. the definition of the grid, excluding quantities such as density of specific
energy) from either a previous input or output file by doing:

m = Model()
m.use_geometry(<filename>)

For example, if you create a model with:

77

Hyperion Manual, Release 0.9.2

m1 = Model()
m1.set_cartesian_grid([-1., 1.], [-1., 1.], [-1., 1.])
m1.add_density_grid(np.array([[[1.e-10]]]), ’kmh.hdf5’)
s = m1.add_point_source()
s.luminosity = lsun
s.temperature = 6000.
m1.set_n_photons(initial=1000, imaging=1000)
m1.write(’model_1.rtin’)

and run the model to produce model_1.rtout, then you can create a new model that makes use of the geometry to
set up a model with the same grid, but different density values and source properties by doing:

m2 = Model()
m2.use_geometry(’model_1.rtout’)
m2.add_density_grid(np.array([[[2.e-10]]]), ’kmh.hdf5’)
s = m2.add_point_source()
s.luminosity = 0.5 * lsun
s.temperature = 6000.
m2.set_n_photons(initial=1000, imaging=1000)
m2.write(’model_2.rtin’)

The use_geometry() method can take either a previous input or output file. See use_geometry() for more
information.

Quantities

Similarly, you can also instruct Hyperion to use the same density grid by doing:

m.use_quantities(<filename>, quantities=<quantities to use>)

As for the geometry, the file can be a previous input or output file from Hyperion. If an input file, then by default
the previous input density (and optionally specific energy) will be used, whereas if an output file, then by default the
final specific energy and the initial density will be used. By default, this will also read in the minimum specific energy
requested for the grids, and the dust properties.

For example, in the example mentioned in Geometry you can do:

m2 = Model()
m2.use_geometry(’model_1.rtout’)
m2.use_quantities(’model_1.rtout’)
s = m2.add_point_source()
s.luminosity = lsun
s.temperature = 6000.
m2.set_n_photons(initial=1000, imaging=1000)
m2.write(’model_2.rtin’)

to use the density, specific energy, and dust from model_1.rtout. If you want to keep the specific energy as-is and
avoid computing it further, you should make sure that you disable the calculation of the specific energy:

m2 = Model()
m2.use_geometry(’model_1.rtout’)
m2.use_quantities(’model_1.rtout’)
s = m2.add_point_source()
s.luminosity = lsun
s.temperature = 6000.
m2.set_n_initial_iterations(0) # disable specific energy calculation
m2.set_n_photons(imaging=1000) # don’t specify initial number of photons
m2.write(’model_2.rtin’)

78 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Note that you can also use just the density or just the specific energy if you wish, by using the quantities argument,
e.g.:

m2.use_quantities(’model_1.rtout’, quantities=[’density’])

or:

m2.use_quantities(’model_1.rtout’, quantities=[’specific_energy’])

In the case where quantities are being read from an output file, you can also explicitly request that only the input
quantities be read in:

m2.use_quantities(’model_1.rtout’, only_initial=True)

You can disable using the dust from the previous model (in case you want to change it):

m2.use_quantities(’model_1.rtout’, use_dust=False)

and you can also disable using the minimum specific energy:

m2.use_quantities(’model_1.rtout’, use_minimum_specific_energy=False)

If you are computing a model where the density is changing from one iteration to the next (for example due to dust
sublimation), and if you want to use the final density, you will need to make sure that you run the initial model with
the option to output the density at the last iteration:

m1.conf.output.output_density = ’last’

Finally, by default the behavior of use_quantities() is to read in the data, so that it can be modified, but if you
do not plan to modify the density, specific energy, or dust properties, you can also simply link to the previous quantities
by doing:

m2.use_quantities(..., copy=False)

For more information, see use_quantities().

Sources

You can import sources from a previous input or output file with:

m2.use_sources(’model_1.rtout’)

This will read in the sources, and you can then modify them if needed, or add new ones to the model. For more
information, see use_sources().

Configuration

Several methods are available to read in the image/SED configuration, runtime parameters, and output parameters
from a previous model:

m1.use_image_config(filename)
m1.use_run_config(filename)
m1.use_output_config(filename)

As for the Sources, it is then possible to modify these parameters, and optionally add new images. For more informa-
tion, see use_image_config(), use_run_config(), and use_output_config().

4.1. Advanced topics 79

Hyperion Manual, Release 0.9.2

4.1.2 Advanced configuration

In Radiative transfer settings, we saw how to set some of the basic parameters that determine how Hyperion is run,
and in this section we discuss some more advanced options.

Monochromatic radiative transfer

By default, when producing images, the radiative transfer is done over all wavelengths where radiation is emitted.
Every emitted photon is propagated, and may be scattered or absorbed and re-emitted (or both) and we follow the
propagation until the photon escapes the grid. When the photon is binned into an image or SED (whether making
images with the binning or peeling-off algorithms), the photon is binned into a wavelength grid.

This means that producing images at exact wavelengths can be very inefficient, because it may be that 99% of the
photons end up at a different wavelength and do not contribute to the images. In order to get around this problem,
Hyperion also implements the concept of monochromatic radiative transfer (see section 2.6.4 of the Hyperion paper).
In short, the way this algorithm works is that since the temperature has already been computed by the time the images
are being computed, it is possible to consider only the propagation, scattering, and absorption of photons at the specific
wavelengths/frequencies of interest.

To enable monochromatic radiative transfer, before setting the number of photons, you should call the
set_monochromatic() method. For example, to compute images at 1, 1.2, and 1.4 microns, you would need
to do:

m.set_monochromatic(True, wavelengths=[1., 1.2, 1.4])

where the wavelength arguments takes a list of wavelengths in microns. It is also possible to specify the frequencies
in Hz:

m.set_monochromatic(True, frequencies=[1.e11, 2.e11])

When using the monochromatic mode, it is then necessary to set the number of photons separately for the photons
emitted from sources and the photons emitted from dust:

m.set_n_photons(..., imaging_sources=1000, imaging_dust=1000, ...)

This should be used instead of the imaging option. The number of photons is the number per wave-
length/frequency.

Scattered-light images

In some cases, one might want to compute scattered light images at wavelengths where there is no dust emission. In
this case, there is no need to compute the specific energy of the dust, and there is also no need in re-emitting photons
when computing images/SEDs. Therefore, one can set:

m.set_n_initial_iterations(0)
m.set_kill_on_absorb(True)
m.set_raytracing(True)

which turns off the specific energy calculation, kills photons as soon as they are first absorbed, and enables raytracing
for the source emission. For the photon numbers, one can set raytracing_dust=0 to zero, since this is not needed
(there is no dust emission).

Note: This cannot be used for all scattered light images. For example, in a protostar, a K-band image may have a
non-negligeable amount of scattered light flux originating from the inner rim of the disk. This technique can only be
used when there is no dust emission.

80 Chapter 4. Advanced

http://adsabs.harvard.edu/abs/2011A%26A...536A..79R

Hyperion Manual, Release 0.9.2

This can be combined with the Monochromatic radiative transfer option described above to avoid wasting photons at
wavelengths where they are not needed. When treating only scattering, you will then want to set the following options:

m.set_n_photons(imaging_sources=1000, imaging_dust=0,
raytracing_sources=1000, raytracing_dust=0)

where the values should be adjusted to your model, but the important point is that initial is not needed, and
imaging_dust and raytracing_dust can be set to 0.

For a full example of a model computing scattered light images, see How to efficiently compute pure scattering models.

Miscellaneous Settings

Set the maximum number of photon interactions:

m.set_max_interactions(100000)

Set the number of output bytes per floating point value for the physical arrays (4 = 32-bit, 8 = 64-bit):

m.set_output_bytes(4)

To set the minimum temperature for dust:

m.set_minimum_temperature(10.)
m.set_minimum_temperature([10., 5., 20.])

If a scalar value is specified, the same value is used for all dust types. If a list is specified, the list should have as many
items as dust types, and each item corresponds to the minimum temperature for each dust type.

Similarly, to set the minimum specific energy:

m.set_minimum_specific_energy(1.e-4)
m.set_minimum_specific_energy([1.e-4, 1.e-5, 2.e-5])

By default, photon positions and cells are double-checked every 1 in 1000 cell crossings. This can be changed with
set_propagation_check_frequency():

m.set_propagation_check_frequency(0.01)

Note that values higher than 0.001 (the default) will cause the code to slow down.

4.1.3 Reducing file sizes

By default, and to be safe, links between HDF5 files are not used, since they would potentially break if the files being
referred to were moved or deleted. However, this means that in a few cases, data is duplicated. There are two places
where this occurs, described below.

Linking when calling Model.write

When writing out a model, the dust properties (and optionally the specific energy from a previous run) are copied into
the input HDF5 file. To use links instead, you can use:

m = Model(...)
...
m.write(..., copy=False)

4.1. Advanced topics 81

Hyperion Manual, Release 0.9.2

An additional argument, absolute_paths, can be used to specify whether to use links that are relative (to the input
file) or absolute. The default is to use relative links, but you can use absolute links with:

m = Model(...)
...
m.write(..., copy=False, absolute_paths=True)

Linking to input files in output files

Once the Fortran code has computed an output HDF5 file, it will copy the contents of the input file into an Input/
group in the output file, as certain information such as grid geometry can be useful in post-processing. To link to the
input file instead, you can use the following method when setting up the model in your Python script:

m = Model(...)
...
m.set_copy_input(False)

In the above example, the Fortran code will now link to the input instead of copying it. In this case, the path used is
the same as the path to the input file specifying when calling the Hyperion Fortran code.

4.1.4 Octree Grids

Octrees are hierarchical in nature, and therefore it is easiest to think about setting them up in a recursive manner. To
set up an octree, we want to populate a list of booleans (referred to as refined).

The first value indicates whether the parent cell is sub-divided. If it is, then the the second element indicates whether
the first cell of the parent cell is sub-divided. If it isn’t, then the next value indicates whether the second cell of the
parent cell is sub-divided. If it is, then we need to specify the booleans for all the children of that cell before we move
to the third cell of the parent cell.

For example, the simplest grid is a single cell that is not sub-divided:

refined = [False]

The next simplest grid is a single grid cell that is only sub-divided once:

refined = [True, False, False, False, False, False, False, False, False]

It is easier to picture this as a hierarchy:

refined = [True,
False,
False,
False,
False,
False,
False,
False,
False,
]

If we sub-divide the third sub-cell in the parent cell into cells that are themselves not sub-divided, we get:

refined = [True,
False,
False,
True,
False,

82 Chapter 4. Advanced

http://en.wikipedia.org/wiki/Octree

Hyperion Manual, Release 0.9.2

False,
False,
False,
False,
False,
False,
False,

False,
False,
False,
False,
False,
]

and so on. The order of the sub-cells is first along x, then along y, then along z.

In practice, we can make use of a recursive function to set up such a grid. The following example demonstrates this:

Set the random seed to make this example predictable
import random
random.seed(’octree-demo’)

def construct_octree(refined=[True]):

Loop over subcells
for subcell in range(8):

Insert criterion for whether cell should be sub-divided. Here we
just use a random number to demonstrate.
divide = random.random() < 0.12

Append boolean to overall list
refined.append(divide)

If the cell is sub-divided, recursively divide it further
if divide:

construct_octree(refined)

return refined

oct = construct_octree()

which gives a refined grid with 65 cells and sub-cells. The length of the list should always be one plus a multiple of 8.

4.1.5 AMR Grids

AMR grids are specified by nested objects in the Python, with a layout described in Coordinate grids and physical
quantities. These objects can be built in several ways:

Programmatically

The following example demonstrates how an AMR grid can be built programmatically from scratch:

from hyperion.grid import AMRGrid
amr = AMRGrid()
for ilevel in range(nlevels):

level = amd.add_level()

4.1. Advanced topics 83

Hyperion Manual, Release 0.9.2

for igrid in range(ngrids):
grid = level.add_grid()
grid.xmin, grid.xmax = ..., ...
grid.ymin, grid.ymax = ..., ...
grid.zmin, grid.zmax = ..., ...
grid.nx, grid.ny, grid.nz = ..., ..., ...
grid.quantities[’density’] = np.array(...)

where nlevels is the number of levels in the AMR grid, and ngrids is the number of grids each each level. The
dimensions of the np.array(...) on the last line should be (nz, ny, nx).

Requirements

The following geometrical requirements have to be respected:

• In a given level, all grids should have the same x, y, and z resolutions, i.e. the resolution in each direction can
be different, but the resolution along a particular direction has to be the same for all grids in the level.

• In a given level, the edges of all grids have to line up with a common grid defined by the widths in each direction.
For example, if the cell width is 1.0 in the x direction, one cannot have a grid with xmin=0.0 and one with
xmin=0.5 since the cell walls in the x direction for these two grids do not line up on a common grid.

• The refinement ratio between two levels (the ratio of widths of cells in a direction from one level to the next)
should be a whole number. The refinement ratio can be different for different directions, and can be greater than
2.

• The boundaries of grids in a given level have to line up with cell walls in the parent level.

If these conditions are not met, then the Fortran Hyperion code will raise an error.

From simulation output

Importing functions are available in hyperion.importers to convert simulation output to the AMR structure
required. At this time, only output from the Orion code can be read in. If the output is contained in a directory
directory, then the AMR structure can be retrieved with:

from hyperion.importers import parse_orion
amr, stars = parse_orion(’directory’)

The stars variable is a list of Star instances. These Star instances have several attributes, which include:

• x, y, and z - the position of the star

• m, r - the mass and radius of the star

• mdot - the infall rate onto the star

These can be used for example to set up sources of emission in the model:

Set up the stars
for star in stars:

source = m.add_point_source()
source.luminosity = lsun
source.position = (star.x, star.y, star.z)
source.temperature = 6000.

The above just creates sources with equal temperatures and luminosities, but these can also be set depending on m, r,
and mdot.

84 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

4.1.6 Filtering logging messages in Python scripts

All messages printed by the Hyperion Python routines use the built-in logging module. This means that it is possible
to filter messages based on importance. Messages can have one of several levels:

• DEBUG (10): detailed information, typically of interest only when diagnosing problems.

• INFO (20): confirmation that things are working as expected

• WARNING (30): An indication that something unexpected happened, or indicative of some problem in the near
future. The program is still working as expected.

• ERROR (40): due to a more serious problem, the program has not been able to perform some function (but no
exception is being raised).

• CRITICAL (50): a serious error, indicating that the program itself may be unable to continue running (but no
exception is being raised).

Note that the CRITICAL level is unlikely to be used, since critical errors should raise Exceptions in practice.

It is possible to specify a threshold for logging messages. Messages which are less severe than this threshold will be
ignored. The default threshold in Hyperion is 20 (INFO), indicating that all the above messages will be shown except
DEBUG. Using 40 for example would cause only ERROR and CRITICAL messages to be shown.

By directly accessing the Hyperion logger

If you want to filter different messages in different scripts, you can directly access the logger and set the level manually:

from hyperion.util.logger import logger
logger.setLevel(10)

Using the Hyperion configuration file

If you want to always filter the same messages for all projects on a given computer, you can create a .hyperionrc
file in your home directory, containing the following entries related to logging:

[logging]
color:yes
level:0

4.1.7 Advanced settings for peeled images

Peeloff origin

First, it is possible to change the origin relative to which the peeling-off, and therefore the image extent, are defined.
This is set to (0., 0., 0.) by default, but you can change it using:

image.set_peeloff_origin((x, y, z))

where x, y, and z are floating-point values giving the cartesian coordinates of the peeloff origin. This can be used
for example when doing radiative transfer calculations on a simulation, in order to create images centered on different
sources.

4.1. Advanced topics 85

http://docs.python.org/library/logging.html

Hyperion Manual, Release 0.9.2

Inside observers

It is also possible to specify that the images should be calculated from the point of view of an observer that is inside
the coordinate grid, rather than at infinity. For example, if you are calculating a model of the Milky-Way Galaxy, you
could place yourself at the position of the Sun using:

from hyperion.util.constants import kpc
image.set_inside_observer((8.5 * kpc, 0., 0.))

Note that in this case, the peeloff origin cannot be set, and the image limits, rather than being in cm, should be given
in degrees on the sky. Note also that, like sky coordinates, the x range of the image limits should be inverted. For
example:

image.set_image_limits(65., -65., -1., 1.)

will produce an image going from l=65 to l=-65, and from b=-1 to b=1.

Image depth

Finally, it is possible to restrict the depth along the line of sight from which photons should be included, with the
default being:

image.set_depth(-np.inf, np.inf)

The minimum and maximum depth are measured in cm. For standard images, the depth is taken relative to the plane
passing through the origin of the peeling-off. For images calculated for an observer inside the grid, the default is:

image.set_depth(0., np.inf)

where the depth is measured relative and away from the observer.

Note that in this mode, the optical depth used to calculate the peeling off is the total optical depth to the observer, not
just the optical depth in the slab considered. The slab is only used to determine which emission or scattering events
should be included in the image.

Finally, the two following topics are reserved for coding ninjas! They explain the HDF5 file format used for the dust
files and the model files so that you can write your own library, and bypass the Python library altogether.

4.1.8 Dust HDF5 Format

Overview

Hyperion requires information on the dust properties, such as the albedo, opacity, mean opacities, and emissivities.
These need to be packaged in an HDF5 format that is described below. In most cases you do not need to create
these files from scratch, and you can instead use the Hyperion Python library to produce these (see Preparing dust
properties). If however you want to write the files directly without the Python library, this section is for you!

Dust file HDF5 format specification

An HDF5 dust file should contain 5 datasets. The root of the file should contain the following attributes:

• emissvar: whether the emissivity is specified as a function of specific energy absorbed in each cell (E) or
another quantity (but this is not supported at this time).

• version: this should be set to 1 - the version described in this section.

86 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

• type: the dust file type. At the moment, the only kind of dust file supported is one giving the four unique
elements of the scattering matrix of dust as a function of scattering angle (1). In future, other types of dust, such
as aligned grains, which require the full 16 elements, will be implemented.

• lte: whether the dust emissivities assume local thermodynamic equilibrium (LTE).

• python_version: the version of the Python Hyperion library used to generate the file. Set this to ‘0.8.7’ if
you are writing files yourself rather than using the Hyperion library.

The datasets present should be the following:

optical_properties

This dataset should consist of a table with the basic optical properties of the dust as a function of frequency, in a binary
table. The columns should be:

• nu: The frequency, in Hz.

• albedo: The albedo of the dust.

• chi: The opacity of the dust to extinction, in cm^2/g.

• P1, P2, P3, and P4: The four elements of the scattering matrix. These columns should be vector columns, with
each table cell containing the elements for as many angles as specified in scattering_angles.

scattering_angles

This dataset should consist of a single-column table. The column should be mu, and should give the values of the
cosine of the scattering angle for which the matrix elements are tabulated in the Optical properties dataset.

mean_opacities

This dataset should consist of a table with pre-computed mean opacities for the dust. The columns should be:

• specific energy: The specific energy for which the mean opacities are given

• chi_planck: The Plank mean opacity to extinction, in cm^2/g

• chi_rosseland: The Rosseland mean opacity to extinction, in cm^2/g

• kappa_planck: The Plank mean opacity to absorption, in cm^2/g

• kappa_rosseland: The Rosseland mean opacity to absorption, in cm^2/g

The temperatures specified should range from 0.1K (or less) to a temperature safely above the maximum temperature
expected for the dust in the system.

emissivities

This dataset should consist of a table specifying the emissivities. The columns should be:

• nu: The frequencies at which the emissivity is specified.

• j_nu: The emissivity for the specified frequency, as a function of specific energy. This should be a vector
column, where the width of the column is the number of values specified in the emissivity_variable
dataset.

4.1. Advanced topics 87

Hyperion Manual, Release 0.9.2

emissivity_variable

This dataset should consist of a single-column table. The column should be specific_energy and should give
the specific energies for which the emissivities are tabulated in the emissivities dataset.

4.1.9 Model Input HDF5 Format

Introduction

The radiation transfer code reads in an HDF5 file as input. The contents of the file have to follow a specific layout.
To differentiate this format from other HDF5 files, we use the .rtin extension for input files to the radiation transfer
code.

An .rtin file should contain the following four groups:

Dust/
Grid/
Sources/
Output/

These are described in Dust, Grid, Sources, and Output respectively. In addition, a number of attributes should be set
at the root level, and these are described in Root-level attributes.

Dust

The Dust group should contain as many groups (or external/internal links to groups) as dust types. The groups should
be named:

dust_001/
dust_002/
...

Each group should have the layout described in Dust HDF5 Format.

Grid

This section is incomplete.

Sources

This section is incomplete.

Output

This section is incomplete.

Root-level attributes

The overall configuration for the model should be specified as attributes for the root group in the HDF5 file. The
parameters needed are described in the following sub-sections.

88 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

General

• python_version: the version of the Hyperion Python library used to generate the file. If you are not
generating the file with the Hyperion Python library (which is probably the case if you are reading this page)
then set it to ‘0.8.7’ since that is the version for which the format in this page is described.

• physics_io_bytes: whether to write out the physical quantities using 4- or 8-byte floating point values.
Should be either 4 or 8 (integer).

Iterations

• n_lucy_iter: Number of temperature-calculating Lucy iterations (integer)

• check_convergence: Whether to check for convergence in the specific energy calculation. Should be yes
or no (string).

• convergence_absolute: the threshold for absolute changes in the specific energy (float).

• convergence_relative: the threshold for relative changes in the specific energy (float).

• convergence_percentile: the percentile at which to check the absolute and relative changes in the
specific energy (float).

See Specific energy calculation for the latter three.

Diffusion approximation

• mrw: Whether or not to use the modified random walk (MRW) algorithm. Should be yes or no (string).

• pda: Whether or not to use the partial diffusion approximation (PDA) algorithm. Should be yes or no (string).

If mrw is yes, the following two attributes should be set:

• mrw_gamma: The gamma parameter for the modified random walk as described in Diffusion (float).

• n_inter_mrw_max: The maximum number of MRW interactions before a photon is killed (integer).

Images/SEDs

• raytracing: Whether to do a raytracing iteration at the end of the calculation. Should be yes or no (string).

• monochromatic: Whether to calculate the images/SEDs in monochromatic mode. Should be yes or no
(string).

Number of photons

The following attributes are required:

• n_stats: how often to display performance stats. For the MPI-enabled code, this also determines the chunk
of photons to dispatch to each thread at a time (integer).

If n_initial_iter is non-zero, then the following photon number should be specified:

• n_initial_photons: number of photons to emit per iteration in the initial iterations (integer).

If raytracing is yes, then the following photon numbers should be specified:

4.1. Advanced topics 89

Hyperion Manual, Release 0.9.2

• n_ray_photons_sources: number of raytracing photons from sources (integer). Does not need to be
specified if there are no sources.

• n_ray_photons_dust: number of raytracing photons from dust (integer). Does not need to be specified if
there are no dust density grids.

If monochromatic is yes, then the following photon numbers should be specified:

• n_last_photons_sources: the number of photons (per frequency) to emit from sources in the imaging
iteration (integer). Does not need to be specified if there are no sources.

• n_last_photons_dust: the number of photons (per frequency) to emit from dust in the imaging iteration
(integer). Does not need to be specified if there are no dust density grids.

Miscellaneous

• forced_first_scattering: whether to use the forced first scattering algorithm. Should be one of yes
or no (string).

• kill_on_absorb: whether to kill photons when they are absorbed rather than re-emitting them (useful for
scattering-only calculations). Should be one of yes or no (string).

• n_inter_max: the maximum number of interactions a photon can have before being it is killed (integer).

• n_reabs_max: the maximum number of times a photon can be re-absorbed before it is killed (integer).

Optional

The following attributes are optional:

• sample_sources_evenly: whether to emit the same number of photons from each source (as opposed to
emitting a number of photons proportional to the luminosity). Should be yes or no (string). Defaults to no.

• enforce_energy_range: whether to always reset values below the minimum and above the maximum
specific energy to the bounds of the range. Should be yes or no (string). Defaults to yes.

4.2 Detailed description of objects and functions (API)

4.2.1 Utilities

hyperion.util.constants

The hyperion.util.constants module contains a number of useful physical constants that can be used when
setting up or postprocessing models. All constants are defined in the cgs system. Since all attributes for objects
(sources, images, etc.) required parameters to be specified in the cgs system, one can therefore do:

from hyperion.util.constants import au, pc
e = m.add_power_law_envelope()
e.rmin = 0.1 * au
e.rmax = pc

which is equivalent to writing:

e = m.add_power_law_envelope()
e.rmin = 1.49598e12
e.rmax = 3.08568025e18

90 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

but the former is more readable. The available constants are described below:

Fundamental constants

hyperion.util.constants.h = 6.626068e-27
Planck constant (erg.s)

hyperion.util.constants.k = 1.3806503e-16
Boltzmann constant (erg/K)

hyperion.util.constants.c = 29979245800.0
Speed of light (cm/s)

hyperion.util.constants.G = 6.673e-08
Gravitational constant (cm^3/g/s^2)

hyperion.util.constants.sigma = 5.67051e-05
Stefan-Boltzmann constant (erg/cm^2/K^4/s)

hyperion.util.constants.m_h = 1.6733e-24
Mass of a hydrogen atom (g)

Solar constants

hyperion.util.constants.lsun = 3.846e+33
Luminosity of the Sun (erg/s)

hyperion.util.constants.msun = 1.989e+33
Mass of the Sun (g)

hyperion.util.constants.rsun = 69550800000.0
Radius of the Sun (cm)

hyperion.util.constants.tsun = 5778.0
Effective temperature of the Sun (K)

Common Astronomical constants

hyperion.util.constants.au = 14959800000000.0
One Astronomical Unit (cm)

hyperion.util.constants.pc = 3.08568025e+18
One parsec (cm)

hyperion.util.constants.kpc = 3.08568025e+21
One kiloparsec (cm)

hyperion.util.constants.year = 31557600.0
Length of a year (s)

4.2.2 Models

hyperion.model.Model

class hyperion.model.Model(name=None)

4.2. Detailed description of objects and functions (API) 91

Hyperion Manual, Release 0.9.2

Adding sources

add_source(source)
add_point_source(*args, **kwargs)
add_spherical_source(*args, **kwargs)
add_external_spherical_source(*args, **kwargs)
add_external_box_source(*args, **kwargs)
add_map_source(*args, **kwargs)
add_plane_parallel_source(*args, **kwargs)

Setting the grid

set_grid(grid)
set_cartesian_grid(x_wall, y_wall, z_wall)
set_cylindrical_polar_grid(w_wall, z_wall, ...)
set_spherical_polar_grid(r_wall, t_wall, p_wall)
set_octree_grid(x, y, z, dx, dy, dz, refined)
set_amr_grid(description)

Setting quantities

add_density_grid(density, dust[, ...]) Add a density grid to the model

Images/SEDs

add_peeled_images(**kwargs)
add_binned_images(**kwargs)

Configuration

set_seed(seed) Set the seed for the random number generation
set_propagation_check_frequency(frequency) Set how often to check that the photon is in the right cell
set_monochromatic(monochromatic[, ...]) Set whether to do the radiation transfer at specific frequencies/wavelengths.
set_minimum_temperature(temperature) Set the minimum temperature for the dust
set_minimum_specific_energy(specific_energy) Set the minimum specific energy for the dust
set_n_initial_iterations(n_iter) Set the number of initial iterations for computing the specific energy in each cell.
set_raytracing(raytracing) Set whether to use raytracing for the non-scattered flux
set_max_interactions(inter_max) Set the maximum number of interactions a photon can have.
set_max_reabsorptions(reabs_max) Set the maximum number of successive reabsorptions by a source that a photon can have.
set_pda(pda) Set whether to use the Partial Diffusion Approximation (PDA)
set_mrw(mrw[, gamma, inter_max]) Set whether to use the Modified Random Walk (MRW) approximation
set_convergence(convergence[, percentile, ...]) Set whether to check for convergence over the initial iterations
set_kill_on_absorb(kill_on_absorb) Set whether to kill absorbed photons
set_forced_first_scattering(...) Set whether to ensure that photons scatter at least once before escaping the grid.
set_output_bytes(io_bytes) Set whether to output physical quantity arrays in 32-bit or 64-bit

Continued on next page

92 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Table 4.5 – continued from previous page
set_sample_sources_evenly(sample_sources_evenly) If set to ‘True’, sample evenly from all sources and apply
set_enforce_energy_range(enforce) Set how to deal with cells that have specific energy rates that are below or above that provided in the mean opacities and emissivities.
set_copy_input(copy) Set whether to copy the input data into the output file.

Running

write([filename, compression, copy, ...]) Write the model input parameters to an HDF5 file
run([filename, logfile, mpi, n_processes, ...]) Run the model (should be called after write()).

Re-using previous models

read(filename[, only_initial]) Read in a previous model file
use_geometry(filename) Use the grid from an existing output or input file
use_quantities(filename[, quantities, ...]) Use physical quantities from an existing output file
use_sources(filename) Use sources from an existing output file
use_image_config(filename) Use image configuration from an existing output or input file
use_run_config(filename) Use runtime configuration from an existing output or input file
use_output_config(filename) Use output configuration from an existing output or input file

Methods (detail)

add_source(source)

add_point_source(*args, **kwargs)

add_spherical_source(*args, **kwargs)

add_external_spherical_source(*args, **kwargs)

add_external_box_source(*args, **kwargs)

add_map_source(*args, **kwargs)

add_plane_parallel_source(*args, **kwargs)

set_grid(grid)

set_cartesian_grid(x_wall, y_wall, z_wall)

set_cylindrical_polar_grid(w_wall, z_wall, p_wall)

set_spherical_polar_grid(r_wall, t_wall, p_wall)

set_octree_grid(x, y, z, dx, dy, dz, refined)

set_amr_grid(description)

add_density_grid(density, dust, specific_energy=None, merge_if_possible=False)
Add a density grid to the model

Parameters density : np.ndarray or grid quantity

The density of the dust. This can be specified either as a 3-d Numpy array for carte-
sian, cylindrical polar, or spherical polar grids, as a 1-d array for octree grids, or as a
grid quantity object for all grid types. Grid quantity objects are obtained by taking an

4.2. Detailed description of objects and functions (API) 93

Hyperion Manual, Release 0.9.2

instance of a grid class (e.g. AMRGrid, CartesianGrid, ...) and specifying the
quantity as an index, e.g. amr[’density’] where amr is an AMRGrid object.

dust : str or dust instance

The dust properties, specified either as a string giving the filename of the dust properties,
or a as an instance of a dust class (e.g. SphericalDust, IsotropicDust, ...).

specific_energy : np.ndarray or grid quantity, optional

The specific energy of the density grid. Note that in order for this to be useful, the num-
ber of initial iterations should be set to zero, otherwise these values will be overwritten
after the first initial iteration.

merge_if_possible : bool

Whether to merge density arrays that have the same dust type

add_peeled_images(**kwargs)

add_binned_images(**kwargs)

set_seed(seed)
Set the seed for the random number generation

Parameters seed : int

The seed with which to initialize the random number generation. This should be nega-
tive.

set_propagation_check_frequency(frequency)
Set how often to check that the photon is in the right cell

During photon propagation, it is possible that floating point issues cause a photon to end up in the wrong
cell. By default, the code will randomly double check the position and cell of a photon for every 1 in 1000
cell wall crossings, but this can be adjusted with this method. Note that values higher than around 0.001
will cause the code to slow down.

Parameters frequency : float

How often the photon position and cell should be double-checked (1 is always, 0 is
never).

set_monochromatic(monochromatic, frequencies=None, wavelengths=None)
Set whether to do the radiation transfer at specific frequencies/wavelengths.

Parameters monochromatic : bool

Whether to carry out radiation transfer at specific frequencies or wavelengths

frequencies : iterable of floats, optional

The frequencies to compute the radiation transfer for, in Hz

wavelengths : iterable of floats, optional

The wavelengths to compute the radiation transfer for, in microns

If ‘monochromatic‘ is True, then one of ‘frequencies‘ or :

‘wavelengths‘ is required :

set_minimum_temperature(temperature)
Set the minimum temperature for the dust

Parameters temperature : float, list, tuple, or Numpy array

94 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Notes

This method should not be used in conjunction with set_minimum_specific_energy - only one
of the two should be used.

set_minimum_specific_energy(specific_energy)
Set the minimum specific energy for the dust

Parameters specific_energy : float, list, tuple, or Numpy array

Notes

This method should not be used in conjunction with set_minimum_temperature - only one of the
two should be used.

set_n_initial_iterations(n_iter)
Set the number of initial iterations for computing the specific energy in each cell.

Parameters n_iter : int

The number of initial iterations

set_raytracing(raytracing)
Set whether to use raytracing for the non-scattered flux

If enabled, only scattered photons are peeled off in the iteration following the initial iterations, and an
additional final iteration is carrried out, with raytracing of the remaining flux (sources and thermal and
non-thermal dust emission).

Parameters raytracing : bool

Whether or not to use raytracing in the final iteration

set_max_interactions(inter_max)
Set the maximum number of interactions a photon can have.

Parameters inter_max : int

Maximum number of interactions for a single photon. This can be used to prevent
photons from getting stuck in very optically thick regions, especially if the modified
random walk is not used.

set_max_reabsorptions(reabs_max)
Set the maximum number of successive reabsorptions by a source that a photon can have.

Parameters reabs_max : int

Maximum number of reabsorptions for a single photon.

set_pda(pda)
Set whether to use the Partial Diffusion Approximation (PDA)

If enabled, the PDA is used to compute the specific energy in cells which have seen few or no photons by
formally solving the diffusion equations, using the cells with valid specific energies as boundary condi-
tions.

Parameters pda : bool

Whether or not to use the PDA

4.2. Detailed description of objects and functions (API) 95

Hyperion Manual, Release 0.9.2

References

Min et al. 2009, Astronomy and Astrophysics, 497, 155

set_mrw(mrw, gamma=1.0, inter_max=1000)
Set whether to use the Modified Random Walk (MRW) approximation

If enabled, the MRW speeds up the propagation of photons in very optically thick regions by locally setting
up a spherical diffusion region.

Parameters mrw : bool

Whether or not to use the MRW

gamma : float, optional

The parameter describing the starting criterion for the MRW. The MRW is carried out
if the distance to the closest cell is larger than gamma times the Rosseland mean free
path.

inter_max : int, optional

Maximum number of interactions during a single random walk. This can be used to
prevent photons from getting stuck in the corners of cells in very optically thick regions,
where the MRW stars to become inefficient itself.

References

Min et al. 2009, Astronomy and Astrophysics, 497, 155

set_convergence(convergence, percentile=100.0, absolute=0.0, relative=0.0)
Set whether to check for convergence over the initial iterations

If enabled, the code will check whether the specific energy absorbed in each cell has converged. First,
the ratio between the previous and current specific energy absorbed in each cell is computed in each cell,
and the value at the specified percentile (percentile) is found. Then, convergence has been achieved if this
value is less than an absolute threshold (absolute), and if it changed by less than a relative threshold ratio
(relative).

Parameters convergence : bool

Whether or not to check for convergence.

percentile : float, optional

The percentile at which to check for convergence.

absolute : float, optional

The abolute threshold below which the percentile value of the ratio has to be for con-
vergence.

relative : float, optional

The relative threshold below which the ratio in the percentile value has to be for con-
vergence.

set_kill_on_absorb(kill_on_absorb)
Set whether to kill absorbed photons

Parameters kill_on_absorb : bool

Whether to kill absorbed photons

96 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

set_forced_first_scattering(forced_first_scattering)
Set whether to ensure that photons scatter at least once before escaping the grid.

Parameters forced_first_scattering : bool

Whether to force at least one scattering before escaping the grid

References

Wood & Reynolds, 1999, The Astrophysical Journal, 525, 799

set_output_bytes(io_bytes)
Set whether to output physical quantity arrays in 32-bit or 64-bit

Parameters io_bytes : int

The number of bytes for the output. This should be either 4 (for 32-bit) or 8 (for 64-bit).

set_sample_sources_evenly(sample_sources_evenly)
If set to ‘True’, sample evenly from all sources and apply probability weight based on relative luminosities.
Otherwise, sample equal energy photons from sources with probability given by relative luminosities.

Parameters sample_evenly : bool

Whether to sample different sources evenly

set_enforce_energy_range(enforce)
Set how to deal with cells that have specific energy rates that are below or above that provided in the mean
opacities and emissivities.

Parameters enforce : bool

Whether or not to reset specific energies that are above or below the range of values used
to specify the mean opacities and emissivities to the maximum or minimum value of the
range. Setting this to True modifies the energy in the simulation, but ensures that the
emissivities are consistent with the energy in the cells. Setting this to False means that
the total energy in the grid will be correct, but that the emissivities may be inconsistent
with the energy in the cells (if an energy is out of range, the code will pick the closest
available one). In both cases, warnings will be displayed to notify the user whether this
is happening.

set_copy_input(copy)
Set whether to copy the input data into the output file.

Parameters copy : bool

Whether to copy the input data into the output file (True) or whether to link to it (False)

write(filename=None, compression=True, copy=True, absolute_paths=False, wall_dtype=<type
‘float’>, physics_dtype=<type ‘float’>, overwrite=True)

Write the model input parameters to an HDF5 file

Parameters filename : str

The name of the input file to write. If no name is specified, the filename is constructed
from the model name.

compression : bool

Whether to compress the datasets inside the HDF5 file.

copy : bool

4.2. Detailed description of objects and functions (API) 97

Hyperion Manual, Release 0.9.2

Whether to copy all external content into the input file, or whether to just link to external
content.

absolute_paths : bool

If copy=False, then if absolute_paths is True, absolute filenames are used in the link,
otherwise the path relative to the input file is used.

wall_dtype : type

Numerical type to use for wall positions.

physics_dtype : type

Numerical type to use for physical grids.

overwrite : bool

Whether to overwrite any pre-existing file

run(filename=None, logfile=None, mpi=False, n_processes=2, overwrite=False)
Run the model (should be called after write()).

Parameters filename : str, optional

The output filename for the model. If not specified, then if the input file name contains
.rtin, then this is replaced with .rtout, and otherwise .rtout is appended to the
input filename.

logfile : str, optional

If specified, the standard output and errors will be output to this log file

mpi : bool, optional

Whether to run the model using the parallel (MPI) version of Hyperion.

n_processes : int, optional

If mpi is set to True, this can be used to specify the number of processes to run
Hyperion on.

overwrite : bool, optional

If set to True, the output file is overwritten without warning.

classmethod read(filename, only_initial=True)
Read in a previous model file

This can be used to read in a previous input file, or the input in an output file (which is possible because
the input to a model is stored or linked in an output file).

If you are interested in re-using the final specific energy (and final density, if present) of a previously run
model, you can use:

>>> m = Model.read(’previous_model.rtout’, only_initial=False)

Parameters filename : str

The name of the file to read the input data from

only_initial : bool, optional

Whether to use only the initial quantities, or whether the final specific energy (and
optionally density) from the previous model can be used. By default, only the input
density (and specific energy, if present) are read in.

98 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

use_geometry(filename)
Use the grid from an existing output or input file

Parameters filename : str

The file to read the grid from. This can be either the input or output file from a radiation
transfer run.

use_quantities(filename, quantities=[’density’, ‘specific_energy’],
use_minimum_specific_energy=True, use_dust=True, copy=True,
only_initial=False)

Use physical quantities from an existing output file

Parameters filename : str

The file to read the quantities from. This should be the output file of a radiation transfer
run.

quantities : list

Which physical quantities to read in. Can include ‘density’ and ‘specific_energy’.

copy : bool

Whether to copy the quantities into the new input file, or whether to just link to them.

use_minimum_specific_energy : bool

Whether to also use the minimum specific energy values from the file specified

use_dust : bool

Whether to also use the dust properties from the file specified

copy : bool

Whether to read in a copy of the data. If set to False, then the physical quantities will
only be links to the specified HDF5 file, and can therefore not be modified.

only_initial : bool, optional

Whether to use only the initial quantities, or whether the final specific energy (and
optionally density) from the previous model can be used. By default, only the input
density (and specific energy, if present) are read in.

use_sources(filename)
Use sources from an existing output file

Parameters filename : str

The file to read the sources from. This should be the input or output file of a radiation
transfer run.

use_image_config(filename)
Use image configuration from an existing output or input file

Parameters filename : str

The file to read the parameters from. This can be either the input or output file from a
radiation transfer run.

use_run_config(filename)
Use runtime configuration from an existing output or input file

Parameters filename : str

4.2. Detailed description of objects and functions (API) 99

Hyperion Manual, Release 0.9.2

The file to read the parameters from. This can be either the input or output file from a
radiation transfer run.

use_output_config(filename)
Use output configuration from an existing output or input file

Parameters filename : str

The file to read the parameters from. This can be either the input or output file from a
radiation transfer run.

hyperion.model.AnalyticalYSOModel

AnalyticalYSOModel inherits from Model, so all methods and attributes present in the latter can be used with
the former, but they are not listed here.

class hyperion.model.AnalyticalYSOModel(name=None)

Adding density structures

add_flared_disk() Add a flared disk to the model
add_alpha_disk() Add an alpha disk to the geometry
add_power_law_envelope() Add a spherically symmetric power-law envelope to the model
add_ulrich_envelope() Add an infalling rotationally flatted envelope to the model
add_ambient_medium() Add an infalling rotationally flatted envelope to the model

Setting the grid automatically

set_spherical_polar_grid_auto(n_r, n_theta, ...) Set the grid to be spherical polar with automated resolution.
set_cylindrical_polar_grid_auto(n_w, n_z, n_phi) Set the grid to be cylindrical polar with automated resolution.

Miscellaneous

setup_magnetospheric_accretion(mdot, rtrunc, ...) Set up the model for magnetospheric accretion

Writing

write([filename, compression, copy, ...]) Write the model input parameters to an HDF5 file

Methods (detail)

add_flared_disk()
Add a flared disk to the model

Returns disk : FlaredDisk

A FlaredDisk instance.

100 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Examples

To add a flared disk to the model, you can do:

>>> disk = m.add_flared_disk()

then set the disk properties using e.g.:

>>> disk.mass = 1.e30 # g
>>> disk.rmin = 1e10 # cm
>>> disk.rmax = 1e14 # cm

See the FlaredDisk documentation to see which parameters can be set.

add_alpha_disk()
Add an alpha disk to the geometry

This is similar to a flared disk, but with accretion luminosity. See AlphaDisk for more details.

Returns disk : AlphaDisk

A AlphaDisk instance.

Examples

To add an alpha disk to the model, you can do:

>>> disk = m.add_alpha_disk()

then set the disk properties using e.g.:

>>> disk.mass = 1.e30 # g
>>> disk.rmin = 1e10 # cm
>>> disk.rmax = 1e14 # cm

See the AlphaDisk documentation to see which parameters can be set.

add_power_law_envelope()
Add a spherically symmetric power-law envelope to the model

Returns env : PowerLawEnvelope

A PowerLawEnvelope instance.

Examples

To add a power-law envelope to the model, you can do:

>>> env = m.add_power_law_envelope()

then set the envelope properties using e.g.:

>>> from hyperion.util.constants import msun, au
>>> env.mass = 0.1 * msun # g/s
>>> env.rmin = 0.1 * au # cm
>>> env.rmax = 10000. * au # cm

See the PowerLawEnvelope documentation to see which parameters can be set.

4.2. Detailed description of objects and functions (API) 101

Hyperion Manual, Release 0.9.2

add_ulrich_envelope()
Add an infalling rotationally flatted envelope to the model

Returns env : UlrichEnvelope

An UlrichEnvelope instance.

Examples

To add an infalling envelope to the model, you can do:

>>> env = m.add_ulrich_envelope()

then set the envelope properties using e.g.:

>>> from hyperion.util.constants import msun, yr, au
>>> env.mdot = 1.e-6 * msun / yr # g/s
>>> env.rmin = 0.1 * au # cm
>>> env.rmax = 10000. * au # cm

See the UlrichEnvelope documentation to see which parameters can be set.

add_ambient_medium()
Add an infalling rotationally flatted envelope to the model

Returns ambient : AmbientMedium

An AmbientMedium instance.

Notes

Unlike other density structures, the ambient medium is not added to the whole density structure, but it is
instead used as a minimum threshold. That is, anywhere within ambient.rmin and ambient.rmax,
the density is reset to ambient.rho if it was initially lower.

Examples

To add an ambient medium to the model, you can do:

>>> ambient = m.add_ambient_medium()

then set the ambient medium properties using e.g.:

>>> from hyperion.util.constants import au, pc
>>> ambient.rho = 1.e-20 # cgs
>>> ambient.rmin = 0.1 * au # cm
>>> ambient.rmax = pc # cm

See the AmbientMedium documentation to see which parameters can be set.

set_spherical_polar_grid_auto(n_r, n_theta, n_phi, rmax=None)
Set the grid to be spherical polar with automated resolution.

Parameters n_r, n_theta, n_phi : int

Number of cells to use in the radial, theta, and azimuthal directions.

rmax : float, optional

102 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

The maximum radius to extend out to. If not specified, this is set to the maximum
spherical radius of the dust geometry in the mid-plane. Note that if you are including
a disk with a cylindrical outer edge, this should be set to a value larger than the disk
radius, otherwise the disk will be truncated with a spherical edge.

set_cylindrical_polar_grid_auto(n_w, n_z, n_phi, wmax=None, zmax=None)
Set the grid to be cylindrical polar with automated resolution.

Parameters n_w, n_z, n_phi : int

Number of cells to use in the radial, vertical, and azimuthal directions.

wmax : float, optional

The maximum radius to extend out to. If not specified, this is set to the maximum
cylindrical radius of the dust geometry in the mid-plane.

zmax : float, optional

The maximum height above and below the midplane to extend to. If not specified, this
is set to the maximum cylindrical radius of the dust geometry.

setup_magnetospheric_accretion(mdot, rtrunc, fspot, xwav_min=0.001, xwav_max=0.01)
Set up the model for magnetospheric accretion

Parameters mdot : float

The accretion rate onto the star in cgs

rtrunc : float

The magnetospheric truncation radius of the disk in cgs

fspot : float

The spot coverage fraction. Photons will be emitted uniformly from the star, the cov-
erage fraction fspot will determine the spectrum of the hot spot emission (smaller
covering fractions will lead to a hotter spectrum).

Notes

This method only takes into account the hot spot and X-ray emission from the stellar surface.
To simulate the viscous accretion luminosity in the disk, add an AlphaDisk to the model using
add_alpha_disk() and set the accretion rate or luminosity accordingly.

write(filename=None, compression=True, copy=True, absolute_paths=False, wall_dtype=<type
‘float’>, physics_dtype=<type ‘float’>, overwrite=True, merge_if_possible=True)

Write the model input parameters to an HDF5 file

Parameters filename : str

The name of the input file to write. If no name is specified, the filename is constructed
from the model name.

compression : bool

Whether to compress the datasets inside the HDF5 file.

copy : bool

Whether to copy all external content into the input file, or whether to just link to external
content.

absolute_paths : bool

4.2. Detailed description of objects and functions (API) 103

Hyperion Manual, Release 0.9.2

If copy=False, then if absolute_paths is True, absolute filenames are used in the link,
otherwise the path relative to the input file is used.

wall_dtype : type

Numerical type to use for wall positions.

physics_dtype : type

Numerical type to use for physical grids.

overwrite : bool

Whether to overwrite any pre-existing file

merge_if_possible : bool

Whether to merge density arrays that have the same dust type

hyperion.model.ModelOutput

class hyperion.model.ModelOutput(filename)
A class that can be used to access data in the output file from radiative transfer models.

Parameters name : str

The name of the model output file (including extension)

Methods

get_sed([stokes, group, technique, ...]) Retrieve SEDs for a specific image group and Stokes component.
get_image([stokes, group, technique, ...]) Retrieve images for a specific image group and Stokes component.
get_quantities([iteration]) Retrieve one of the physical grids for the model

Methods (detail)

get_sed(stokes=’I’, group=0, technique=’peeled’, distance=None, component=’total’, in-
clination=’all’, aperture=’all’, uncertainties=False, units=None, source_id=None,
dust_id=None)

Retrieve SEDs for a specific image group and Stokes component.

Parameters stokes : str, optional

The Stokes component to return. This can be:

• ‘I’: Total intensity [default]

• ‘Q’: Q Stokes parameter (linear polarization)

• ‘U’: U Stokes parameter (linear polarization)

• ‘V’: V Stokes parameter (circular polarization)

• ‘linpol’: Total linear polarization fraction

• ‘circpol’: Total circular polariation fraction

technique : str, optional

Whether to retrieve SED(s) computed with photon peeling-off (‘peeled’) or binning
(‘binned’). Default is ‘peeled’.

104 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

group : int, optional

The peeloff group (zero-based). If multiple peeloff image groups were requested, this
can be used to select between them. The default is to return the first group. This option
is only used if technique=’peeled’.

distance : float, optional

The distance to the observer, in cm.

component : str, optional

The component to return based on origin and last interaction. This can be:

• ‘total’: Total flux

• ‘source_emit’: The photons were last emitted from a source and did not undergo any
subsequent interactions.

• ‘dust_emit’: The photons were last emitted dust and did not undergo any subsequent
interactions

• ‘source_scat’: The photons were last emitted from a source and were subsequently
scattered

• ‘dust_scat’: The photons were last emitted from dust and were subsequently scattered

aperture : int, optional

The index of the aperture to plot (zero-based). Use ‘all’ to return all apertures, and -1 to
show the largest aperture.

inclination : int, optional

The index of the viewing angle to plot (zero-based). Use ‘all’ to return all viewing
angles.

uncertainties : bool, optional

Whether to compute and return uncertainties

units : str, optional

The output units for the SED(s). Valid options if a distance is specified are:

• ’ergs/cm^2/s’

• ’ergs/cm^2/s/Hz’

• ’Jy’

• ’mJy’

The default is ’ergs/cm^2/s’. If a distance is not specified, then this option is
ignored, and the output units are ergs/s.

source_id, dust_id : int or str, optional

If the output file was made with track_origin=’detailed’, a specific source and dust com-
ponent can be specified (where 0 is the first source or dust type). If ‘all’ is specified,
then all components are returned individually. If neither of these are not specified, then
the total component requested for all sources or dust types is returned.

Returns wav : numpy.ndarray

The wavelengths for which the SEDs are defined, in microns

flux or degree of polarization : numpy.ndarray

4.2. Detailed description of objects and functions (API) 105

Hyperion Manual, Release 0.9.2

The flux or degree of polarization. This is a data cube which has at most three di-
mensions (n_inclinations, n_apertures, n_wavelengths). If an aperture or inclination is
specified, this reduces the number of dimensions in the flux cube. If stokes is one of
‘I’, ‘Q’, ‘U’, or ‘V’, the flux is either returned in ergs/s (if distance is not specified) or
in the units specified by units= (if distance is specified). If stokes is one of ‘linpol’ or
‘circpol’, the degree of polarization is returned as a fraction in the range 0 to 1.

uncertainty : numpy.ndarray

The uncertainties on the flux or degree of polarization. This has the same dimensions
as the flux or degree of polarization array. This is only returned if uncertainties were
requested.

get_image(stokes=’I’, group=0, technique=’peeled’, distance=None, component=’total’, inclina-
tion=’all’, uncertainties=False, units=None, source_id=None, dust_id=None)

Retrieve images for a specific image group and Stokes component.

Parameters stokes : str, optional

The Stokes component to return. This can be:

• ‘I’: Total intensity [default]

• ‘Q’: Q Stokes parameter (linear polarization)

• ‘U’: U Stokes parameter (linear polarization)

• ‘V’: V Stokes parameter (circular polarization)

• ‘linpol’: Total linear polarization fraction

• ‘circpol’: Total circular polariation fraction

technique : str, optional

Whether to retrieve an image computed with photon peeling-off (‘peeled’) or binning
(‘binned’). Default is ‘peeled’.

group : int, optional

The peeloff group (zero-based). If multiple peeloff image groups were requested, this
can be used to select between them. The default is to return the first group. This option
is only used if technique=’peeled’.

distance : float, optional

The distance to the observer, in cm.

component : str, optional

The component to return based on origin and last interaction. This can be:

• ‘total’: Total flux

• ‘source_emit’: The photons were last emitted from a source and did not undergo any
subsequent interactions.

• ‘dust_emit’: The photons were last emitted dust and did not undergo any subsequent
interactions

• ‘source_scat’: The photons were last emitted from a source and were subsequently
scattered

• ‘dust_scat’: The photons were last emitted from dust and were subsequently scattered

inclination : int, optional

106 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

The index of the viewing angle to plot (zero-based). Use ‘all’ to return all viewing
angles.

uncertainties : bool, optional

Whether to compute and return uncertainties

units : str, optional

The output units for the image(s). Valid options if a distance is specified are:

• ’ergs/cm^2/s’

• ’ergs/cm^2/s/Hz’

• ’Jy’

• ’mJy’

• ’MJy/sr’

The default is ’ergs/cm^2/s’. If a distance is not specified, then this option is
ignored, and the output units are ergs/s.

source_id, dust_id : int or str, optional

If the output file was made with track_origin=’detailed’, a specific source and dust com-
ponent can be specified (where 0 is the first source or dust type). If ‘all’ is specified,
then all components are returned individually. If neither of these are not specified, then
the total component requested for all sources or dust types is returned.

Returns wav : numpy.ndarray

The wavelengths for which the SEDs are defined, in microns

flux or degree of polarization : numpy.ndarray

The flux or degree of polarization. This is a data cube which has at most three dimen-
sions (n_inclinations, n_wavelengths). If an aperture or inclination is specified, this
reduces the number of dimensions in the flux cube. If stokes is one of ‘I’, ‘Q’, ‘U’,
or ‘V’, the flux is either returned in ergs/s (if distance is not specified) or in the units
specified by units= (if distance is specified). If stokes is one of ‘linpol’ or ‘circpol’, the
degree of polarization is returned as a fraction in the range 0 to 1.

uncertainty : numpy.ndarray

The uncertainties on the flux or degree of polarization. This has the same dimensions
as the flux or degree of polarization array. This is only returned if uncertainties were
requested.

get_quantities(iteration=-1)
Retrieve one of the physical grids for the model

Parameters iteration : integer, optional

The iteration to retrieve the quantities for. The default is to return the grid for the last
iteration.

Returns grid : Grid instance

An object containing information about the geometry and quantities

4.2. Detailed description of objects and functions (API) 107

Hyperion Manual, Release 0.9.2

hyperion.model.helpers

hyperion.model.helpers.run_with_vertical_hseq(prefix, model, n_iter=10, mpi=False,
n_processes=2, overwrite=False)

Run a model with vertical hydrostatic equilibrium.

Note: this is an experimental function that is currently in development. Please use with care!

The hydrostatic equilibrium condition is only applied to the disk components. The following requirements must
be met:

•The model should be an AnalyticalYSOModel

•The model should be defined on a cylindrical polar grid

•The stellar mass should be set

•The model should include at least one disk

The dust properties for the model can be specified as dust or dust+gas densities as this does not have an im-
pact on this calculation - however, the hydrostatic equilibrium is computed assuming an H2 + He mix of gas
(i.e. mu=2.279). Note that this calculation also ignores the effects of self-gravity in the disk, which might be
important for more massive disks.

Parameters prefix : str

The prefix for the output

model : ~hyperion.model.analytical_yso_model.AnalyticalYSOModel

The model to run

n_iter : int, optional

The number of iterations to run the model for

mpi : bool, optional

Whether to run the model in parallel

n_processes : int, optional

The number of processes to use if mpi is True

overwrite : bool, optional

Whether to overwrite previous files

hyperion.model.helpers.tau_to_radius(model, tau, wav)
Given a Model instance with a spherical polar coordinate grid, find the radius from which the optical depth to
escape radially is a fixed value.

This only works for spherical polar grids, but works for 1-, 2-, and 3-d grids.

Parameters model : ~hyperion.model.Model instance

tau : float

The optical depth for which to find the surface

wav : float

The wavelength at which the optical depth is defined

Returns r : np.ndarray

108 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

The radius or radii at which the optical depth to escape radially is tau at wav. This is
a scalar, a 1-d, or a 2-d array depending on the dimensionality of the grid.

4.2.3 Density structures

hyperion.densities.FlaredDisk

class hyperion.densities.FlaredDisk(mass=None, rho_0=None, rmin=None, rmax=None,
p=-1, beta=-1.25, h_0=None, r_0=None, cylindri-
cal_inner_rim=True, cylindrical_outer_rim=True,
star=None, dust=None)

This class implements the density structure for a flared axisymmatric disk, with a density given by:

ρ(R, z, φ) = ρdisk
0

(
R0

R

)β−p
exp

[
−1

2

(
z

h(R)

)2
]

Once the FlaredDisk class has been instantiated, the parameters for the density structure can be set via
attributes:

>>> from hyperion.util.constants import msun, au
>>> disk = FlaredDisk()
>>> disk.mass = 2. * msun
>>> disk.rmin = 0.1 * au
>>> disk.rmax = 100 * au

Attributes

mass Total disk mass (g)
rho_0 Scale-factor for the disk density (g/cm^3)
rmin inner radius (cm)
rmax outer radius (cm)
p surface density power-law exponent
beta scaleheight power-law exponent
h_0 scaleheight of the disk at r_0 (cm)
r_0 radius at which h_0 is defined (cm)
cylindrical_inner_rim Whether the inner edge of the disk should be defined as a truncation
cylindrical_outer_rim Whether the outer edge of the disk should be defined as a truncation
dust dust properties (filename or dust object)

Methods

density(grid) Return the density grid
midplane_cumulative_density(r) Find the cumulative column density as a function of radius.
vertical_cumulative_density(r, theta) Find the cumulative column density as a function of theta.

4.2. Detailed description of objects and functions (API) 109

Hyperion Manual, Release 0.9.2

Methods (detail)

density(grid)
Return the density grid

Parameters grid : SphericalPolarGrid or CylindricalPolarGrid instance.

The spherical or cylindrical polar grid object containing information about the position
of the grid cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the disk inside each cell. The shape of
this array is the same as grid.shape.

midplane_cumulative_density(r)
Find the cumulative column density as a function of radius.

The cumulative density is measured outwards from the origin, and in the midplane.

Parameters r : np.ndarray

Array of values of the radius up to which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

vertical_cumulative_density(r, theta)
Find the cumulative column density as a function of theta.

Parameters r : float

The spherical radius at which to calculate the cumulative density.

theta : np.ndarray

The theta values at which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

hyperion.densities.AlphaDisk

class hyperion.densities.AlphaDisk(mass=None, rho_0=None, rmin=None, rmax=None,
p=-1, beta=-1.25, h_0=None, r_0=None, cylindri-
cal_inner_rim=True, cylindrical_outer_rim=True,
mdot=None, lvisc=None, star=None, dust=None)

This class implements the density structure for an alpha-accretion disk as implemented in Whitney et al. (2003),
with a density given by:

ρ(R, z, φ) = ρdisk
0

(
1−

√
R0

R

)(
R0

R

)β−p
exp

[
−1

2

(
z

h(R)

)2
]

Once the AlphaDisk class has been instantiated, the parameters for the density structure can be set via at-
tributes:

110 Chapter 4. Advanced

http://dx.doi.org/10.1086/375415

Hyperion Manual, Release 0.9.2

>>> from hyperion.util.constants import msun, au
>>> disk = AlphaDisk()
>>> disk.mass = 2. * msun
>>> disk.rmin = 0.1 * au
>>> disk.rmax = 100 * au

The difference between FlaredDisk and AlphaDisk is that the latter includes an extra term in the density
equation (1 −

√
R0/R) but most importantly that it allows for viscous accretion luminosity, specified either

via an accretion rate, or an accretion luminosity. The relation between the accretion rate and the accretion
luminosity in an infinitesimal volume is:

dĖacc

dV
=

3GM?Ṁacc√
32π3R3h(R)

(
1−

√
R0

R

)
exp

[
−1

2

(
z

h(R)

)2
]

This is equation (4) from Whitney et al. (2003). Once integrated over the whole disk, this gives a total luminosity
of:

Lacc =
GM?Macc

2

[
3

(
1

Rmin
− 1

Rmax

)
− 2

(√
R?
R3

min

−

√
R?
R3

max

)]

Attributes

mass Total disk mass (g)
rho_0 Scale-factor for the disk density (g/cm^3)
rmin inner radius (cm)
rmax outer radius (cm)
p surface density power-law exponent
beta scaleheight power-law exponent
h_0 scaleheight of the disk at r_0 (cm)
r_0 radius at which h_0 is defined (cm)
cylindrical_inner_rim Whether the inner edge of the disk should be defined as a truncation
cylindrical_outer_rim Whether the outer edge of the disk should be defined as a truncation
mdot accretion rate (g/s)
lvisc viscous accretion luminosity (ergs/s)
star central star instance (needs mass and radius attributes)
dust dust properties (filename or dust object)

Methods

density(grid) Return the density grid
midplane_cumulative_density(r) Find the cumulative column density as a function of radius.
vertical_cumulative_density(r, theta) Find the cumulative column density as a function of theta.
accretion_luminosity(grid) Return the viscous accretion luminosity grid

4.2. Detailed description of objects and functions (API) 111

http://dx.doi.org/10.1086/375415

Hyperion Manual, Release 0.9.2

Methods (detail)

density(grid)
Return the density grid

Parameters grid : SphericalPolarGrid or CylindricalPolarGrid instance.

The spherical or cylindrical polar grid object containing information about the position
of the grid cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the disk inside each cell. The shape of
this array is the same as grid.shape.

midplane_cumulative_density(r)
Find the cumulative column density as a function of radius.

The cumulative density is measured outwards from the origin, and in the midplane.

Parameters r : np.ndarray

Array of values of the radius up to which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

vertical_cumulative_density(r, theta)
Find the cumulative column density as a function of theta.

Parameters r : float

The spherical radius at which to calculate the cumulative density.

theta : np.ndarray

The theta values at which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

accretion_luminosity(grid)
Return the viscous accretion luminosity grid

Parameters grid : SphericalPolarGrid or CylindricalPolarGrid instance.

The spherical or cylindrical polar grid object containing information about the position
of the grid cells.

Returns lvisc : np.ndarray

A 3-dimensional array containing the viscous accretion luminosity of the disk inside
each cell. The shape of this array is the same as grid.shape.

hyperion.densities.PowerLawEnvelope

class hyperion.densities.PowerLawEnvelope
This class implements the density structure for a spherically symmetric power-law envelope, with a density

112 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

given by:

ρ(r) = ρenv
0

(
r

r0

)γ

Once the PowerLawEnvelope class has been instantiated, the parameters for the density structure can be set
via attributes:

>>> from hyperion.util.constants import msun, au, pc
>>> envelope = PowerLawEnvelope()
>>> envelope.mass = msun
>>> envelope.rmin = 0.1 * au
>>> envelope.rmax = pc

PowerLawEnvelope instances can only be used with spherical polar grids at this time.

Attributes

mass total mass (g)
rho_0 density at r_0 (g/cm^3)
rmax outer radius (cm)
rmin inner radius (cm)
power density power-law exponent
dust dust properties (filename or dust object)

Methods

density(grid[, ignore_cavity]) Return the density grid
outermost_radius(rho) Find the outermost radius at which the density of the envelope has fallen to rho.
midplane_cumulative_density(r) Find the cumulative column density as a function of radius.
add_bipolar_cavity() Add a bipolar cavity to the envelope.

Methods (detail)

density(grid, ignore_cavity=False)
Return the density grid

Parameters grid : SphericalPolarGrid instance.

The spherical polar grid object containing information about the position of the grid
cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the envelope inside each cell. The
shape of this array is the same as grid.shape.

outermost_radius(rho)
Find the outermost radius at which the density of the envelope has fallen to rho.

Parameters rho : float

The density for which to determine the radius

4.2. Detailed description of objects and functions (API) 113

Hyperion Manual, Release 0.9.2

Returns r : float

The radius at which the density has fallen to rho

midplane_cumulative_density(r)
Find the cumulative column density as a function of radius.

The cumulative density is measured outwards from the origin, and in the midplane.

Parameters r : np.ndarray

Array of values of the radius up to which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

add_bipolar_cavity()
Add a bipolar cavity to the envelope.

Returns cavity : BipolarCavity instance

The bipolar cavity instance, which can then be used to set the parameters of the cavity.

hyperion.densities.UlrichEnvelope

class hyperion.densities.UlrichEnvelope(mdot=None, rho_0=None, rmin=None, rmax=None,
rc=None, ambient_density=0.0, star=None)

This class implements the density structure for a rotationally flattened and infalling envelope, with a density
given by:

ρ(r, θ) =
Ṁenv

4π (GM?R3
c)

1/2

(
r

Rc

)−3/2(
1 +

µ

µ0

)−1/2(
µ

µ0
+

2µ2
0Rc

r

)−1

= ρenv
0

(
r

Rc

)−3/2(
1 +

µ

µ0

)−1/2(
µ

µ0
+

2µ2
0Rc

r

)−1

where mu_0 is given by the equation for the streamline:

µ3
0 + µ0

(
r

Rc
− 1

)
− µ

(
r

Rc

)
= 0

Once the UlrichEnvelope class has been instantiated, the parameters for the density structure can be set via
attributes:

>>> from hyperion.util.constants import msun, au, pc
>>> envelope = UlrichEnvelope()
>>> envelope.rho_0 = 1.e-19
>>> envelope.rmin = 0.1 * au
>>> envelope.rmax = pc

UlrichEnvelope instances can only be used with spherical polar grids at this time.

Attributes

mdot infall rate (g/s)
rho_0 density factor (g/cm^3)

Continued on next page

114 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Table 4.19 – continued from previous page
rmin inner radius (cm)
rc inner radius (cm)
rmax outer radius (cm)
cavity BipolarCavity instance
star central star instance (needs a mass attribute)
dust dust properties (filename or dust object)

Methods

density(grid[, ignore_cavity]) Return the density grid
outermost_radius(rho) Find the outermost radius at which the density of the envelope has fallen to rho (in the midplane).
midplane_cumulative_density(r) Find the cumulative column density as a function of radius.
add_bipolar_cavity() Add a bipolar cavity to the envelope.

Methods (detail)

density(grid, ignore_cavity=False)
Return the density grid

Parameters grid : SphericalPolarGrid instance.

The spherical polar grid object containing information about the position of the grid
cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the envelope inside each cell. The
shape of this array is the same as grid.shape.

outermost_radius(rho)
Find the outermost radius at which the density of the envelope has fallen to rho (in the midplane).

Parameters rho : float

The density for which to determine the radius

Returns r : float

The radius at which the density has fallen to rho

midplane_cumulative_density(r)
Find the cumulative column density as a function of radius.

The cumulative density is measured outwards from the origin, and in the midplane.

Parameters r : np.ndarray

Array of values of the radius up to which to tabulate the cumulative density.

Returns rho : np.ndarray

Array of values of the cumulative density.

add_bipolar_cavity()
Add a bipolar cavity to the envelope.

Returns cavity : BipolarCavity instance

The bipolar cavity instance, which can then be used to set the parameters of the cavity.

4.2. Detailed description of objects and functions (API) 115

Hyperion Manual, Release 0.9.2

hyperion.densities.BipolarCavity

class hyperion.densities.BipolarCavity(theta_0=None, power=None, r_0=None, rho_0=None,
rho_exp=0.0, cap_to_envelope_density=False,
dust=None)

This class implements the density structure for a bipolar cavity in an envelope, with a density given by:

ρ(r) = ρ0

(
r

r0

)−e

inside a volume defined by two parabolic surfaces with half-opening angle theta_0 at r_0.

Once the BipolarCavity class has been instantiated, the parameters for the density structure can be set via
attributes:

>>> cavity = BipolarCavity()
>>> cavity.theta_0 = 10.
>>> cavity.power = 0.

In most cases however, you should not have to instantiate a BipolarCavity class directly, but instead you should
use the add_bipolar_cavity method on the Envelope classes (see for example UlrichEnvelope or
PowerLawEnvelope classes).

Attributes

r_0 radius at which theta_0 and rho_0 are defined (cm)
theta_0 Cavity half-opening angle at r_0
rho_0 density at r_0 (g/cm^3)
power Power of the cavity shape
rho_exp density power-law exponent
dust dust properties (filename or dust object)

Methods

density(grid) Return the density grid
mask(grid) Compute the shape of the bipolar cavity.

Methods (detail)

density(grid)
Return the density grid

Parameters grid : SphericalPolarGrid or CylindricalPolarGrid instance.

The spherical or cylindrical polar grid object containing information about the position
of the grid cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the bipolar cavity inside each cell. The
shape of this array is the same as grid.shape.

116 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

mask(grid)
Compute the shape of the bipolar cavity.

Parameters grid : SphericalPolarGrid or CylindricalPolarGrid instance.

The spherical or cylindrical polar grid object containing information about the position
of the grid cells.

Returns mask : np.ndarray

A 3-dimensional booleand array indicating whether we are inside or outside the bipolar
cavity (True is inside). The shape of this array is the same as grid.shape.

hyperion.densities.AmbientMedium

class hyperion.densities.AmbientMedium(rho=None, rmin=None, rmax=None)
This class implements the density structure for an ambient density medium defined by a constant density, and
an inner and outer radius.

Once the AmbientMedium class has been instantiated, the parameters for the density structure can be set via
attributes:

>>> from hyperion.util.constants import au, pc
>>> ambient = AmbientMedium()
>>> ambient.rho = 1.e-20 # cgs
>>> ambient.rmin = 0.1 * au # cm
>>> ambient.rmax = pc # cm

AmbientMedium instances can only be used with spherical polar grids at this time.

Attributes

rho Density of the ambient medium (g/cm^3)
rmin inner radius (cm)
rmax outer radius (cm)

Methods

density(grid) Return the density grid

Methods (detail)

density(grid)
Return the density grid

Parameters grid : SphericalPolarGrid instance.

The spherical polar grid object containing information about the position of the grid
cells.

Returns rho : np.ndarray

A 3-dimensional array containing the density of the envelope inside each cell. The
shape of this array is the same as grid.shape.

4.2. Detailed description of objects and functions (API) 117

Hyperion Manual, Release 0.9.2

4.2.4 Sources

hyperion.sources.PointSource

class hyperion.sources.PointSource(name=None, peeloff=True, **kwargs)
A point source.

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
position The cartesian position of the source (x, y, z) as a sequence of three floating-point values (cm)

hyperion.sources.SphericalSource

class hyperion.sources.SphericalSource(name=None, peeloff=True, **kwargs)
A spherical source

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
position The cartesian position of the source (x, y, z) as a sequence of three floating-point values (cm)
radius The radius of the source (cm)
limb Whether to include limb darkening

118 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Methods

add_spot(*args, **kwargs) Add a spot to the source.

Methods (detail)

add_spot(*args, **kwargs)
Add a spot to the source.

All arguments are passed to SpotSource, so see that class for more details

hyperion.sources.ExternalSphericalSource

class hyperion.sources.ExternalSphericalSource(name=None, peeloff=True, **kwargs)
An spherical external source.

This can be used for example to simulate the interstellar radiation field. This source is similar to
SphericalSource but emits photons inwards.

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
position The cartesian position of the source (x, y, z) as a sequence of three floating-point values (cm)
radius The radius of the source (cm)

hyperion.sources.ExternalBoxSource

class hyperion.sources.ExternalBoxSource(name=None, peeloff=True, **kwargs)
An rectangular external source.

This can be used for example to simulate the interstellar radiation field. This source emits inwards.

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

4.2. Detailed description of objects and functions (API) 119

Hyperion Manual, Release 0.9.2

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
bounds The cartesian boundaries of the rectangular box specified as

hyperion.sources.MapSource

class hyperion.sources.MapSource(name=None, peeloff=True, **kwargs)
A diffuse source.

This can be used for example to simulate the interstellar radiation field. This source emits inwards.

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
map The relative luminosity in each cell, given as a Numpy array or an AMRGridView instance

hyperion.sources.PlaneParallelSource

class hyperion.sources.PlaneParallelSource(name=None, peeloff=False, **kwargs)
A circular plane-parallel source.

This source emits all photons in the same direction perpendicular to the plane of the source, and in one direction,
like a beam.

Parameters name : str, optional

The name of the source

peeloff : bool, optional

Whether to peel-off photons from this source

120 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Notes

Any additional arguments are are used to initialize attributes.

Attributes

luminosity The bolometric luminosity of the source (ergs/s)
temperature The temperature of the source (K)
spectrum The spectrum of the source, specified either as an astropy.table.Table
position The cartesian position of the source (x, y, z) as a sequence of three floating-point values (cm)
radius The radius of the source (cm)
direction The direction the photons should be emitted in (theta, phi) where theta and phi are spherical polar angles (rad)

4.2.5 Grid

hyperion.grid.CartesianGrid

class hyperion.grid.CartesianGrid(*args)
A cartesian grid.

The grid can be initialized by passing the x, y, and z coordinates of cell walls:

>>> grid = CartesianGrid(x_wall, y_wall, z_wall)

where x_wall, y_wall, and z_wall are 1-d sequences of wall positions. The number of cells in the resulting
grid will be one less in each dimension that the length of these arrays.

CartesianGrid objects may contain multiple quantities (e.g. density, specific energy). To access these, you
can specify the name of the quantity as an item:

>>> grid[’density’]

which is no longer a CartesianGrid object, but a CartesianGridView object. When setting this for the
first time, this can be set either to another CartesianGridView object, an external h5py link, or an empty
list. For example, the following should work:

>>> grid[’density_new’] = grid[’density’]

CartesianGridView objects allow the specific dust population to be selected as an index:

>>> grid[’density’][0]

Which is also a CartesianGridView object. The data can then be accessed with the array attribute:

>>> grid[’density’][0].array

which is a 3-d array of the requested quantity.

Methods

set_walls(x_wall, y_wall, z_wall)
read(group[, quantities]) Read the geometry and physical quantities from a cartesian grid

Continued on next page

4.2. Detailed description of objects and functions (API) 121

Hyperion Manual, Release 0.9.2

Table 4.32 – continued from previous page
read_geometry(group) Read in geometry information from a cartesian grid
read_quantities(group[, quantities]) Read in physical quantities from a cartesian grid
write(group[, quantities, copy, ...]) Write out the cartesian grid
write_single_array(group, name, array[, ...]) Write out a single quantity, checking for consistency with geometry
add_derived_quantity(name, function)

Methods (detail)

set_walls(x_wall, y_wall, z_wall)

read(group, quantities=’all’)
Read the geometry and physical quantities from a cartesian grid

Parameters group : h5py.Group

The HDF5 group to read the grid from. This group should contain groups named ‘Ge-
ometry’ and ‘Quantities’.

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

read_geometry(group)
Read in geometry information from a cartesian grid

Parameters group : h5py.Group

The HDF5 group to read the grid geometry from.

read_quantities(group, quantities=’all’)
Read in physical quantities from a cartesian grid

Parameters group : h5py.Group

The HDF5 group to read the grid quantities from

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

write(group, quantities=’all’, copy=True, absolute_paths=False, compression=True,
wall_dtype=<type ‘float’>, physics_dtype=<type ‘float’>)

Write out the cartesian grid

Parameters group : h5py.Group

The HDF5 group to write the grid to

quantities : ‘all’ or list

Which physical quantities to write out. Use ‘all’ to write out all quantities or a list of
strings to write only specific quantities.

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

122 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

write_single_array(group, name, array, copy=True, absolute_paths=False, compression=True,
physics_dtype=<type ‘float’>)

Write out a single quantity, checking for consistency with geometry

Parameters group : h5py.Group

The HDF5 group to write the grid to

name : str

The name of the array in the group

array : np.ndarray

The array to write out

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

add_derived_quantity(name, function)

class hyperion.grid.CartesianGridView(grid, quantity)

Methods

append(grid) Used to append quantities from another grid
add(grid) Used to add quantities from another grid

Methods (detail)

append(grid)
Used to append quantities from another grid

Parameters grid : 3D Numpy array or CartesianGridView instance

The grid to copy the quantity from

4.2. Detailed description of objects and functions (API) 123

Hyperion Manual, Release 0.9.2

add(grid)
Used to add quantities from another grid

Parameters grid : 3D Numpy array or CartesianGridView instance

The grid to copy the quantity from

hyperion.grid.CylindricalPolarGrid

class hyperion.grid.CylindricalPolarGrid(*args)
A cylindrical polar grid.

The grid can be initialized by passing the w, z, and phi coordinates of cell walls:

>>> grid = CylindricalPolarGrid(w_wall, z_wall, p_wall)

where w_wall, z_wall, and p_wall are 1-d sequences of wall positions. The number of cells in the resulting
grid will be one less in each dimension that the length of these arrays.

CylindricalPolarGrid objects may contain multiple quantities (e.g. density, specific energy). To access
these, you can specify the name of the quantity as an item:

>>> grid[’density’]

which is no longer a CylindricalPolarGrid object, but a CylindricalPolarGridView object.
When setting this for the first time, this can be set either to another CylindricalPolarGridView object,
an external h5py link, or an empty list. For example, the following should work:

>>> grid[’density_new’] = grid[’density’]

CylindricalPolarGridView objects allow the specific dust population to be selected as an index:

>>> grid[’density’][0]

Which is also a CylindricalPolarGridView object. The data can then be accessed with the array
attribute:

>>> grid[’density’][0].array

which is a 3-d array of the requested quantity.

Methods

set_walls(w_wall, z_wall, p_wall)
read(group[, quantities]) Read the geometry and physical quantities from a cylindrical polar grid
read_geometry(group) Read in geometry information from a cylindrical polar grid
read_quantities(group[, quantities]) Read in physical quantities from a cylindrical polar grid
write(group[, quantities, copy, ...]) Write out the cylindrical polar grid
write_single_array(group, name, array[, ...]) Write out a single quantity, checking for consistency with geometry
add_derived_quantity(name, function)

Methods (detail)

set_walls(w_wall, z_wall, p_wall)

read(group, quantities=’all’)

124 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Read the geometry and physical quantities from a cylindrical polar grid

Parameters group : h5py.Group

The HDF5 group to read the grid from. This group should contain groups named ‘Ge-
ometry’ and ‘Quantities’.

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

read_geometry(group)
Read in geometry information from a cylindrical polar grid

Parameters group : h5py.Group

The HDF5 group to read the grid geometry from.

read_quantities(group, quantities=’all’)
Read in physical quantities from a cylindrical polar grid

Parameters group : h5py.Group

The HDF5 group to read the grid quantities from

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

write(group, quantities=’all’, copy=True, absolute_paths=False, compression=True,
wall_dtype=<type ‘float’>, physics_dtype=<type ‘float’>)

Write out the cylindrical polar grid

Parameters group : h5py.Group

The HDF5 group to write the grid to

quantities : ‘all’ or list

Which physical quantities to write out. Use ‘all’ to write out all quantities or a list of
strings to write only specific quantities.

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

write_single_array(group, name, array, copy=True, absolute_paths=False, compression=True,
physics_dtype=<type ‘float’>)

Write out a single quantity, checking for consistency with geometry

Parameters group : h5py.Group

4.2. Detailed description of objects and functions (API) 125

Hyperion Manual, Release 0.9.2

The HDF5 group to write the grid to

name : str

The name of the array in the group

array : np.ndarray

The array to write out

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

add_derived_quantity(name, function)

class hyperion.grid.CylindricalPolarGridView(grid, quantity)

Methods

append(grid) Used to append quantities from another grid
add(grid) Used to add quantities from another grid

Methods (detail)

append(grid)
Used to append quantities from another grid

Parameters grid : 3D Numpy array or CylindricalPolarGridView instance

The grid to copy the quantity from

add(grid)
Used to add quantities from another grid

Parameters grid : 3D Numpy array or CylindricalPolarGridView instance

The grid to copy the quantity from

hyperion.grid.SphericalPolarGrid

class hyperion.grid.SphericalPolarGrid(*args)
A spherical polar grid.

The grid can be initialized by passing the r, theta, and phi coordinates of cell walls:

126 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

>>> grid = SphericalPolarGrid(r_wall, t_wall, p_wall)

where r_wall, t_wall, and p_wall are 1-d sequences of wall positions. The number of cells in the resulting
grid will be one less in each dimension that the length of these arrays.

SphericalPolarGrid objects may contain multiple quantities (e.g. density, specific energy). To access
these, you can specify the name of the quantity as an item:

>>> grid[’density’]

which is no longer a SphericalPolarGrid object, but a SphericalPolarGridView object. When
setting this for the first time, this can be set either to another SphericalPolarGridView object, an external
h5py link, or an empty list. For example, the following should work:

>>> grid[’density_new’] = grid[’density’]

SphericalPolarGridView objects allow the specific dust population to be selected as an index:

>>> grid[’density’][0]

Which is also a SphericalPolarGridView object. The data can then be accessed with the array at-
tribute:

>>> grid[’density’][0].array

which is a 3-d array of the requested quantity.

Methods

set_walls(r_wall, t_wall, p_wall)
read(group[, quantities]) Read the geometry and physical quantities from a spherical polar grid
read_geometry(group) Read in geometry information from a spherical polar grid
read_quantities(group[, quantities]) Read in physical quantities from a spherical polar grid
write(group[, quantities, copy, ...]) Write out the spherical polar grid
write_single_array(group, name, array[, ...]) Write out a single quantity, checking for consistency with geometry
add_derived_quantity(name, function)

Methods (detail)

set_walls(r_wall, t_wall, p_wall)

read(group, quantities=’all’)
Read the geometry and physical quantities from a spherical polar grid

Parameters group : h5py.Group

The HDF5 group to read the grid from. This group should contain groups named ‘Ge-
ometry’ and ‘Quantities’.

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

read_geometry(group)
Read in geometry information from a spherical polar grid

4.2. Detailed description of objects and functions (API) 127

Hyperion Manual, Release 0.9.2

Parameters group : h5py.Group

The HDF5 group to read the grid geometry from.

read_quantities(group, quantities=’all’)
Read in physical quantities from a spherical polar grid

Parameters group : h5py.Group

The HDF5 group to read the grid quantities from

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

write(group, quantities=’all’, copy=True, absolute_paths=False, compression=True,
wall_dtype=<type ‘float’>, physics_dtype=<type ‘float’>)

Write out the spherical polar grid

Parameters group : h5py.Group

The HDF5 group to write the grid to

quantities : ‘all’ or list

Which physical quantities to write out. Use ‘all’ to write out all quantities or a list of
strings to write only specific quantities.

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

write_single_array(group, name, array, copy=True, absolute_paths=False, compression=True,
physics_dtype=<type ‘float’>)

Write out a single quantity, checking for consistency with geometry

Parameters group : h5py.Group

The HDF5 group to write the grid to

name : str

The name of the array in the group

array : np.ndarray

The array to write out

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

128 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

add_derived_quantity(name, function)

class hyperion.grid.SphericalPolarGridView(grid, quantity)

Methods

append(grid) Used to append quantities from another grid
add(grid) Used to add quantities from another grid

Methods (detail)

append(grid)
Used to append quantities from another grid

Parameters grid : 3D Numpy array or SphericalPolarGridView instance

The grid to copy the quantity from

add(grid)
Used to add quantities from another grid

Parameters grid : 3D Numpy array or SphericalPolarGridView instance

The grid to copy the quantity from

hyperion.grid.AMRGrid

class hyperion.grid.AMRGrid(amr_grid=None)
An AMR grid.

Levels are stored in the levels attribute, which is a list of hyperion.grid.amr_grid.Level objects,
which in turn contain a grids attribute which is a list of Grid objects.

Levels can be added with:

level = amr.add_level()

And grids can be added to a level with:

grid = level.add_grid()

Grid objects have the following attributes which should be set:

•xmin - lower x position of the grid

•xmax - upper x position of the grid

4.2. Detailed description of objects and functions (API) 129

Hyperion Manual, Release 0.9.2

•ymin - lower y position of the grid

•ymax - upper y position of the grid

•zmin - lower z position of the grid

•zmax - upper z position of the grid

•nx - number of cells in x direction

•ny - number of cells in y direction

•nz - number of cells in z direction

•quantities - a dictionary containing physical quantities (see below)

AMRGrid objects may contain multiple quantities (e.g. density, specific energy). To access these, you can
specify the name of the quantity as an item:

>>> grid[’density’]

which is no longer an AMRGrid object, but a AMRGridView object. When setting this for the first time, this
can be set either to another AMRGridView object, an external h5py link, or an empty list. For example, the
following should work:

>>> grid[’density_new’] = grid[’density’]

AMRGridView objects allow the specific dust population to be selected as an index:

>>> grid[’density’][0]

Which is also an AMRGridView object.

Methods

read(group[, quantities]) Read the geometry and physical quantities from an AMR grid
read_geometry(group) Read in geometry information from an AMR grid
read_quantities(group[, quantities]) Read in physical quantities from an AMR grid
write(group[, quantities, copy, ...]) Write out the AMR grid
write_single_array(group, name, amr_grid[, ...]) Write out a single quantity, checking for consistency with geometry
add_derived_quantity(name, function)

Methods (detail)

read(group, quantities=’all’)
Read the geometry and physical quantities from an AMR grid

Parameters group : h5py.Group

The HDF5 group to read the grid from. This group should contain groups named ‘Ge-
ometry’ and ‘Quantities’.

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

read_geometry(group)
Read in geometry information from an AMR grid

130 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

Parameters group : h5py.Group

The HDF5 group to read the geometry from

read_quantities(group, quantities=’all’)
Read in physical quantities from an AMR grid

Parameters group : h5py.Group

The HDF5 group to read the grid quantities from

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

write(group, quantities=’all’, copy=True, absolute_paths=False, compression=True,
wall_dtype=<type ‘float’>, physics_dtype=<type ‘float’>)

Write out the AMR grid

Parameters group : h5py.Group

The HDF5 group to write the grid to

quantities : ‘all’ or list

Which physical quantities to write out. Use ‘all’ to write out all quantities or a list of
strings to write only specific quantities.

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

write_single_array(group, name, amr_grid, copy=True, absolute_paths=False, compres-
sion=True, physics_dtype=<type ‘float’>)

Write out a single quantity, checking for consistency with geometry

Parameters group : h5py.Group

The HDF5 group to write the grid to

name : str

The name of the array in the group

amr_grid : AMRGridView

The array to write out

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

4.2. Detailed description of objects and functions (API) 131

Hyperion Manual, Release 0.9.2

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

add_derived_quantity(name, function)

class hyperion.grid.AMRGridView(amr_grid, quantity)

Methods

append(amr_grid_view) Used to append quantities from another grid
add(amr_grid_view) Used to add quantities from another grid

Methods (detail)

append(amr_grid_view)
Used to append quantities from another grid

Parameters amr_grid : AMRGridView instance

The grid to copy the quantity from

add(amr_grid_view)
Used to add quantities from another grid

Parameters amr_grid : AMRGridView instance

The grid to copy the quantity from

hyperion.grid.OctreeGrid

class hyperion.grid.OctreeGrid(*args)
An octree grid.

To initialize an Octree object, use:

>>> grid = OctreeGrid(x, y, z, dx, dy, dz, refined)

where x, y, and z are the cartesian coordinates of the center of the grid, dx, dy, and dz are the half-widths of
the grid, and refined is a sequence of boolean values that indicate whether a given cell is refined.

The first value of the refined sequence indicates whether the parent cell is sub-divided. If it is, then the the
second element indicates whether the first cell of the parent cell is sub-divided. If it isn’t, then the next value
indicates whether the second cell of the parent cell is sub-divided. If it is, then we need to specify the booleans
for all the children of that cell before we move to the third cell of the parent cell.

For example, the simplest grid is a single cell that is not sub-divided:

132 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

refined = [False]

The next simplest grid is a single grid cell that is only sub-divided once:

refined = [True, False, False, False, False, False, False, False, False]

It is easier to picture this as a hierarchy:

refined = [True,
False,
False,
False,
False,
False,
False,
False,
False,
]

If we sub-divide the third sub-cell in the parent cell into cells that are themselves not sub-divided, we get:

refined = [True,
False,
False,
True,
False,
False,
False,
False,
False,
False,
False,
False,

False,
False,
False,
False,
False,
]

and so on. The order of the sub-cells is first along x, then along y, then along z.

OctreeGrid objects may contain multiple quantities (e.g. density, specific energy). To access these, you can
specify the name of the quantity as an item:

>>> grid[’density’]

which is no longer an OctreeGrid object, but a OctreeGridView object. When setting this for the first
time, this can be set either to another OctreeGridView object, an external h5py link, or an empty list. For
example, the following should work:

>>> grid[’density_new’] = grid[’density’]

OctreeGridView objects allow the specific dust population to be selected as an index:

>>> grid[’density’][0]

Which is also an OctreeGridView object.

4.2. Detailed description of objects and functions (API) 133

Hyperion Manual, Release 0.9.2

Methods

set_walls(x, y, z, dx, dy, dz, refined)
read(group[, quantities]) Read the geometry and physical quantities from an octree grid
read_geometry(group) Read in geometry information from a cartesian grid
read_quantities(group[, quantities]) Read in physical quantities from a cartesian grid
write(group[, quantities, copy, ...]) Write out the octree grid
write_single_array(group, name, array[, ...]) Write out a single quantity, checking for consistency with geometry
add_derived_quantity(name, function)

Methods (detail)

set_walls(x, y, z, dx, dy, dz, refined)

read(group, quantities=’all’)
Read the geometry and physical quantities from an octree grid

Parameters group : h5py.Group

The HDF5 group to read the grid from. This group should contain groups named ‘Ge-
ometry’ and ‘Quantities’.

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

read_geometry(group)
Read in geometry information from a cartesian grid

Parameters group : h5py.Group

The HDF5 group to read the grid geometry from.

read_quantities(group, quantities=’all’)
Read in physical quantities from a cartesian grid

Parameters group : h5py.Group

The HDF5 group to read the grid quantities from

quantities : ‘all’ or list

Which physical quantities to read in. Use ‘all’ to read in all quantities or a list of strings
to read only specific quantities.

write(group, quantities=’all’, copy=True, absolute_paths=False, compression=True,
wall_dtype=<type ‘float’>, physics_dtype=<type ‘float’>)

Write out the octree grid

Parameters group : h5py.Group

The HDF5 group to write the grid to

quantities : ‘all’ or list

Which physical quantities to write out. Use ‘all’ to write out all quantities or a list of
strings to write only specific quantities.

copy : bool

Whether to copy external links, or leave them as links.

134 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions (ignored for this kind of grid)

physics_dtype : type

The datatype to use to write the physical quantities

write_single_array(group, name, array, copy=True, absolute_paths=False, compression=True,
physics_dtype=<type ‘float’>)

Write out a single quantity, checking for consistency with geometry

Parameters group : h5py.Group

The HDF5 group to write the grid to

name : str

The name of the array in the group

array : np.ndarray

The array to write out

copy : bool

Whether to copy external links, or leave them as links.

absolute_paths : bool

If copy is False, then this indicates whether to use absolute or relative paths for links.

compression : bool

Whether to compress the arrays in the HDF5 file

wall_dtype : type

The datatype to use to write the wall positions

physics_dtype : type

The datatype to use to write the physical quantities

add_derived_quantity(name, function)

class hyperion.grid.OctreeGridView(grid, quantity)

Methods

append(grid) Used to append quantities from another grid
add(grid) Used to add quantities from another grid

Methods (detail)

append(grid)
Used to append quantities from another grid

4.2. Detailed description of objects and functions (API) 135

Hyperion Manual, Release 0.9.2

Parameters grid : 1D Numpy array or OctreeGridView instance

The grid to copy the quantity from

add(grid)
Used to add quantities from another grid

Parameters grid : 1D Numpy array or OctreeGridView instance

The grid to copy the quantity from

4.2.6 Outputs

hyperion.model.SED

class hyperion.model.SED(nu, val=None, unc=None, units=None)
Class to represent an SED or set of SEDs

Parameters nu : ndarray

The frequencies at which the SED is defined, in Hz

val : ndarray, optional

The values for the SED. The last dimensions should match the number of frequencies.

unc : ndarray, optional

The uncertainties for the SED values. The last dimensions should match the number of
frequencies.

units : str

The units of the values

Attributes

wav The wavelengths for which the SED is defined (in microns).
nu The frequencies for which the SED is defined (in Hz)
val The SED values (fluxes, flux densities, surface brightness, or polarization) in the units given by the .unit property.
unc The uncertainties on the SED values in the units given by the .unit property.
unit The units of the SED values.
ap_min Minimum aperture used to define the SEDs (in cm).
ap_max Maximum aperture used to define the SEDs (in cm).
distance Distance assumed for the image (in cm).
inside_observer Whether the image was from an inside observer.

hyperion.model.Image

class hyperion.model.Image(nu, val=None, unc=None, units=None)
Class to represent an image or set of images

Parameters nu : ndarray

The frequencies at which the image is defined, in Hz

val : ndarray, optional

136 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

The values for the image. The last dimensions should match the number of frequencies.

unc : ndarray, optional

The uncertainties for the image values. The last dimensions should match the number
of frequencies.

units : str

The units of the values

Attributes

wav The wavelengths for which the image is defined (in microns).
nu The frequencies for which the image is defined (in Hz).
val The image values (fluxes, flux densities, surface brightness, or polarization) in the units given by the .unit property.
unc The uncertainties on the image values in the units given by the .unit property.
unit The units of the image values.
x_min Lower extent of the image in the x direction (in cm).
x_max Upper extent of the image in the x direction (in cm).
y_min Lower extent of the image in the y direction (in cm).
y_max Upper extent of the image in the y direction (in cm).
lon_min Lower extent of the image in the x direction (in degrees).
lon_max Upper extent of the image in the x direction (in degrees).
lat_min Lower extent of the image in the y direction (in degrees).
lat_max Upper extent of the image in the y direction (in degrees).
distance Distance assumed for the image (in cm).
pix_area_sr Pixel area (in steradians).
inside_observer Whether the image was from an inside observer.

4.3 Contributing to Hyperion

Whether you are interested in contributing a bug or typo fix, improved documentation, tutorials, or new features, you
can follow the instructions on this page!

The method described below is the preferred way of contributing to Hyperion. By following these instructions, you
will ensure that you are properly credited for the changes in the Hyperion repository, and it will be much easier for the
developers to review and merge in the changes. Therefore, please be patient and follow the step-by-step instructions
and let us know if anything is unclear. If you are unable to follow these instructions for any reason, you can send us a
tar file with updated code, but it will take a while to review the changes.

The instructions described here assume that you have git installed. We use the term trunk to refer to the main Hyperion
repository.

Note: New to git? Fear not! Github has an excellent interactive tutorial here.

4.3.1 Creating a fork

You only need to do this the first time you want to start working on the Hyperion code.

4.3. Contributing to Hyperion 137

http://www.git-scm.com
http://try.github.com

Hyperion Manual, Release 0.9.2

Set up and configure a GitHub account

If you don’t have a GitHub account, go to the GitHub page, and make one.

You then need to configure your account to allow write access - see the Generating SSH keys help on GitHub Help.

Create your own fork of a repository

1. Log into your GitHub account.

2. Go to the Hyperion GitHub home.

3. Click on the fork button:

Now, after a short pause and some ‘Hardcore forking action’, you should find yourself at the home page for your
own forked copy of Hyperion.

Setting up the fork to work on

1. Clone your fork to the local computer:

git clone git@github.com:your-user-name/hyperion.git

2. Change directory to your new repo:

cd hyperion

Then type:

git branch -a

to show you all branches. You’ll get something like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and that you also have a remote connection to
origin/master. What remote repository is remote/origin? Try git remote -v to see the URLs
for the remote. They will point to your GitHub fork.

Now you want to connect to the Hyperion repository, so you can merge in changes from the trunk:

cd hyperion
git remote add upstream git://github.com/hyperion/hyperion.git

upstream here is just the arbitrary name we’re using to refer to the main Hyperion repository.

Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means we
that we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to merge
into our own code.

138 Chapter 4. Advanced

http://help.github.com
http://www.github.com/hyperion-rt/hyperion
http://www.hyperion-rt.org

Hyperion Manual, Release 0.9.2

Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v show,
giving you something like:

upstream git://github.com/hyperion-rt/hyperion.git (fetch)
upstream git://github.com/hyperion-rt/hyperion.git (push)
origin git@github.com:your-user-name/hyperion.git (fetch)
origin git@github.com:your-user-name/hyperion.git (push)

Your fork is now set up correctly, and you are ready to hack away.

Deleting your master branch

It may sound strange, but deleting your own master branch can help reduce confusion about which branch you are
on:

git branch -D master

See deleting master on github for details.

4.3.2 Updating the mirror of trunk

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to point to the right commit. For
example, ‘trunk’ is the branch referred to by (remote/branchname) upstream/master - and if there have been
commits since you last checked, upstream/master will change after you do the fetch.

4.3.3 Making a new feature branch

When you are ready to make some changes to the code, you should start a new branch. Branches that are for a
collection of related edits are often called ‘feature branches’.

Making an new branch for each set of related changes will make it easier for someone reviewing your branch to see
what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us what the changes in the branch are
for. For example add-ability-to-fly, or buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream

Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github fork. To do this, you git push this new
branch up to your github repo. Generally (if you followed the instructions in these pages, and by default), git will have
a link to your GitHub repo, called origin. You push up to your own repo on GitHub with:

git push origin my-new-feature

4.3. Contributing to Hyperion 139

http://matthew-brett.github.com/pydagogue/gh_delete_master.html
http://www.github.com
http://schacon.github.com/git/git-push.html

Hyperion Manual, Release 0.9.2

4.3.4 The editing workflow

1. Make some changes

2. See which files have changed with git status (see git status). You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).

4. Add any new files to version control git add new_file_name (see git add).

5. Add any modified files that you want to commit using git add modified_file_name (see git add).

6. Once you are ready to commit, check with git status which files are about to be committed:

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README

Then use git commit -m ’A commit message’. The m flag just signals that you’re going to type a
message on the command line. The git commit manual page might also be useful.

7. To push the changes up to your forked repo on github, do:

git push origin my-new-feature

4.3.5 Asking for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

1. Go to the URL of your forked repo, say http://github.com/your-user-name/hyperion.

2. Use the ‘Switch Branches’ dropdown menu near the top left of the page to select the branch with your changes:

140 Chapter 4. Advanced

http://schacon.github.com/git/git-status.html
http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-add.html
http://schacon.github.com/git/git-add.html
http://schacon.github.com/git/git-commit.html

Hyperion Manual, Release 0.9.2

3. Click on the ‘Pull request’ button:

Enter a title for the set of changes, and some explanation of what you’ve done. Say if there is anything you’d
like particular attention for - like a complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your pull request message. This is still a
good way of getting some preliminary code review.

4.3.6 Some other things you might want to do (advanced)

Delete a branch on github

change to the master branch (if you still have one, otherwise change to
another branch)
git checkout master

delete branch locally
git branch -D my-unwanted-branch

delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all committing into the same repository, or even
the same branch, then just share it via github.

First fork Hyperion into your account, as from Creating a fork.

Then, go to your forked repository GitHub page, say http://github.com/your-user-name/hyperion

Click on the ‘Admin’ button, and add anyone else to the repo as a collaborator:

Now all those people can do:

git clone git@githhub.com:your-user-name/hyperion.git

4.3. Contributing to Hyperion 141

http://github.com/guides/remove-a-remote-branch

Hyperion Manual, Release 0.9.2

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git:// are
read-only.

Your collaborators can then commit directly into that repo with the usual:

git commit -am ’ENH - much better code’
git push origin master # pushes directly into your repo

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You Updating the mirror of trunk and Making a new feature
branch called cool-feature. At this stage trunk is at some commit, let’s call it E. Now you make some new
commits on your cool-feature branch, let’s call them A, B, C. Maybe your changes take a while, or you come
back to them after a while. In the meantime, trunk has progressed from commit E to commit (say) G:

A---B---C cool-feature
/

D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you remember that this here page sternly
advises you not to do that, because the history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk might affect your changes, and you need
to harmonize them. In this situation you may prefer to do a rebase.

Rebase takes your changes (A, B, C) and replays them as if they had been made to the current state of trunk. In
other words, in this case, it takes the changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

A’--B’--C’ cool-feature
/

D---E---F---G trunk

See rebase without tears for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream

Go to the feature branch
git checkout cool-feature

Make a backup in case you mess up
git branch tmp cool-feature

Rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last command can be written more succinctly
as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at Recovering from mess-ups.

142 Chapter 4. Advanced

http://matthew-brett.github.com/pydagogue/rebase_without_tears.html

Hyperion Manual, Release 0.9.2

If you have made changes to files that have also changed in trunk, this may generate merge conflicts that you need
to resolve - see the git rebase man page for some instructions at the end of the “Description” section. There is some
related help on merging in the git user manual - see resolving a merge.

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is relatively straightforward to recover from such
mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

Reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

Look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

Reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note: Do this only for your own feature branches.

There’s an embarrassing typo in a commit you made? Or perhaps the you made several false starts you would like the
posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we want to make the following changes:

• Rewrite the commit message for 13d7934 to something more sensible.

• Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

4.3. Contributing to Hyperion 143

http://schacon.github.com/git/git-rebase.html
http://schacon.github.com/git/user-manual.html#resolving-a-merge

Hyperion Manual, Release 0.9.2

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit’s log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for 13d7934, and (ii) collapse the last three commits into
one. Now we save and quit the editor.

Git will then immediately bring up an editor for editing the commit message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
2 files changed, 199 insertions(+), 66 deletions(-)

[detached HEAD 0f22701] Fix a few bugs + disable
1 files changed, 79 insertions(+), 61 deletions(-)

Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

144 Chapter 4. Advanced

Hyperion Manual, Release 0.9.2

4.4 Version History

4.4.1 0.9.2 (2013-08-16)

New Features

• get_sed() and get_image() now return SED and Image objects that contain meta-data in addition to
the data itself. For example, images contain information about the field of view (in physical/angular units,
where appropriate), and information about the units is also included. The old syntax of wav, nufnu =
m.get_sed(...) will still work, but the meta-data will not be accessible in those cases.

• New library of dust models, accessible in Library of dust models

• It is now possible to read in previous models completely, including the density structure, geometry,
sources, dust, and configuration, using the read() method. In addition, new methods individual methods
use_sources(), use_image_config(), use_run_config(), and use_output_config() al-
low more detailed control over reading in parameters from previous models.

• It is now possible to force overwrite Hyperion output from the command-line using the -f option:

hyperion -f input output

or when using the individual fortran binaries:

mpirun -n 8 hyperion_car_mpi -f input output

This will likely be useful for users of computer clusters who don’t want a job to fail just because the output file
already exists.

• Regular Cartesian grids can now also be exported for viewing in yt (as was previously possible for AMR and
Octree grids).

• A new function, run_with_vertical_hseq(), is available to help with the calculation of vertical Hydro-
static equilibrium in disks. Note that this feature is still experimental and should be used with care.

• A new function, tau_to_radius(), is available to compute, for spherical polar grids, the optical depth from
infinity to a given radius.

Improvements

• PyFITS, PyWCS, and ATpy are no longer required for Hyperion. Instead, the Astropy package is now required
as a dependency.

• Updated download link for MPICH2

• The rho_0 attribute for disks is now a property, not a method, and can be set by the user instead of the disk
mass.

• The documentation has been improved and fixed in places thanks to user feedback.

• AnalyticalYSOModel instances are no longer ‘static’ once they have been written out (this means one can write
out a model, change a parameter, and write out a new different model, which was not possible previously).

• The Fortran code now reads in dust models faster because it computes all cumulative distribution functions more
efficiently.

• Statistics for killed photons are now kept for each iteration rather than just summing all of them.

4.4. Version History 145

http://yt-project.org/
http://www.astropy.org

Hyperion Manual, Release 0.9.2

Bug fixes

• Fix compatibility with Numpy 1.8.0.dev

• Fix coverage testing for Python 3

• Fixed an issue which caused temporary files to not be deleted after running tests.

API changes

• The AnalyticalYSOModel.evaluate_optically_thin_radii() method has been removed.

4.4.2 0.9.1 (2012-10-26)

New Features

• Updated hyperion2fits to extract binned images

• Added wmax= option for AnalyticalYSOModel.set_cylindrical_grid_auto

Improvements

• Made deps/fortran/install.py script more robust to architecture, and to lack of zlib library.

• Ensure that spectrum always gets converted to floating-point values

• Give a more explicit error message if optical properties for dust are not set.

Bug fixes

• Fixed bug that prevented BipolarCavity from being used

• Ensure that get_quantities works even if no initial iterations were computed

• Fix scattering for cases where P2=0. The code could sometimes crash if a mix of isotropic and non-isotropic
dust was used (reported by M. Wolff).

• Fix a bug that occurred when outputting multiple images with the depth option (reported and fixed by T. Bowers)
[#21, #22]

4.4.3 0.9.0 (2012-07-27)

• Initial public release.

146 Chapter 4. Advanced

CHAPTER

FIVE

CREDITS

Hyperion is currently being developed by Thomas Robitaille.

Interested in contributing fixes or patches to the code or documentation? Read Contributing to Hyperion for more
details! If you are interested in developing new features, contact me and we can discuss how to coordinate efforts.

A great thanks to the following users whose help with testing early versions of Hyperion was invaluable:

• Katharine Johnston

• Nils Lippok

• Stella Offner

• Sarah Ragan

• Andrew Schechtman-Rook

• Amy Stutz

• Barbara Whitney

• Mike Wolff

147

http://www.mpia-hd.mpg.de/~robitaille/
mailto:thomas.robitaille@gmail.com

